Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let’s determine the equation of the directrix for a parabola given the vertex and the focus.
1. Identify the given data: The vertex of the parabola is at the origin [tex]\((0,0)\)[/tex] and the focus is at [tex]\((-2,0)\)[/tex].
2. Understand the relationship between the vertex, focus, and directrix:
- For a parabola with a horizontal axis of symmetry (opening left or right), the directrix is a vertical line.
- The distance from the vertex to the focus is equal to the distance from the vertex to the directrix.
- The focus is [tex]\((-2,0)\)[/tex], which is 2 units to the left of the vertex.
3. Calculate the location of the directrix: Since the focus is 2 units to the left of the vertex, the directrix will be 2 units to the right of the vertex.
- The directrix is equidistant on the opposite side from the vertex.
- Therefore, since the vertex is at [tex]\( (0,0) \)[/tex], moving 2 units to the right of the vertex, the directrix will be at [tex]\( x = 2 \)[/tex].
4. Write the equation of the directrix: The equation for a vertical line 2 units to the right of the vertex ([tex]\(0,0\)[/tex]) is:
[tex]\[ x = 2 \][/tex]
Thus, the correct equation for the directrix of the parabola is [tex]\( \boxed{x = 2} \)[/tex].
1. Identify the given data: The vertex of the parabola is at the origin [tex]\((0,0)\)[/tex] and the focus is at [tex]\((-2,0)\)[/tex].
2. Understand the relationship between the vertex, focus, and directrix:
- For a parabola with a horizontal axis of symmetry (opening left or right), the directrix is a vertical line.
- The distance from the vertex to the focus is equal to the distance from the vertex to the directrix.
- The focus is [tex]\((-2,0)\)[/tex], which is 2 units to the left of the vertex.
3. Calculate the location of the directrix: Since the focus is 2 units to the left of the vertex, the directrix will be 2 units to the right of the vertex.
- The directrix is equidistant on the opposite side from the vertex.
- Therefore, since the vertex is at [tex]\( (0,0) \)[/tex], moving 2 units to the right of the vertex, the directrix will be at [tex]\( x = 2 \)[/tex].
4. Write the equation of the directrix: The equation for a vertical line 2 units to the right of the vertex ([tex]\(0,0\)[/tex]) is:
[tex]\[ x = 2 \][/tex]
Thus, the correct equation for the directrix of the parabola is [tex]\( \boxed{x = 2} \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.