Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let’s determine the equation of the directrix for a parabola given the vertex and the focus.
1. Identify the given data: The vertex of the parabola is at the origin [tex]\((0,0)\)[/tex] and the focus is at [tex]\((-2,0)\)[/tex].
2. Understand the relationship between the vertex, focus, and directrix:
- For a parabola with a horizontal axis of symmetry (opening left or right), the directrix is a vertical line.
- The distance from the vertex to the focus is equal to the distance from the vertex to the directrix.
- The focus is [tex]\((-2,0)\)[/tex], which is 2 units to the left of the vertex.
3. Calculate the location of the directrix: Since the focus is 2 units to the left of the vertex, the directrix will be 2 units to the right of the vertex.
- The directrix is equidistant on the opposite side from the vertex.
- Therefore, since the vertex is at [tex]\( (0,0) \)[/tex], moving 2 units to the right of the vertex, the directrix will be at [tex]\( x = 2 \)[/tex].
4. Write the equation of the directrix: The equation for a vertical line 2 units to the right of the vertex ([tex]\(0,0\)[/tex]) is:
[tex]\[ x = 2 \][/tex]
Thus, the correct equation for the directrix of the parabola is [tex]\( \boxed{x = 2} \)[/tex].
1. Identify the given data: The vertex of the parabola is at the origin [tex]\((0,0)\)[/tex] and the focus is at [tex]\((-2,0)\)[/tex].
2. Understand the relationship between the vertex, focus, and directrix:
- For a parabola with a horizontal axis of symmetry (opening left or right), the directrix is a vertical line.
- The distance from the vertex to the focus is equal to the distance from the vertex to the directrix.
- The focus is [tex]\((-2,0)\)[/tex], which is 2 units to the left of the vertex.
3. Calculate the location of the directrix: Since the focus is 2 units to the left of the vertex, the directrix will be 2 units to the right of the vertex.
- The directrix is equidistant on the opposite side from the vertex.
- Therefore, since the vertex is at [tex]\( (0,0) \)[/tex], moving 2 units to the right of the vertex, the directrix will be at [tex]\( x = 2 \)[/tex].
4. Write the equation of the directrix: The equation for a vertical line 2 units to the right of the vertex ([tex]\(0,0\)[/tex]) is:
[tex]\[ x = 2 \][/tex]
Thus, the correct equation for the directrix of the parabola is [tex]\( \boxed{x = 2} \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.