Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's break down Meg's movement step by step to understand both her total distance traveled and her displacement.
1. First Leg of the Journey:
- Meg walks from her desk to the teacher's desk, which is a distance of [tex]\(2 \, \text{meters}\)[/tex].
2. Second Leg of the Journey:
- From the teacher's desk, Meg walks [tex]\(4 \, \text{meters}\)[/tex] in the opposite direction to the classroom door.
Total Distance Traveled:
- The total distance Meg travels is the sum of the distances of both legs of her journey.
- [tex]\[ \text{Total Distance} = 2 \, \text{meters} + 4 \, \text{meters} = 6 \, \text{meters} \][/tex]
Displacement:
- Displacement is a vector quantity, which means it has both magnitude and direction.
- Meg starts at her desk, walks [tex]\(2 \, \text{meters}\)[/tex] to the teacher's desk, then [tex]\(4 \, \text{meters}\)[/tex] in the opposite direction.
- Net displacement is determined by the final position relative to the starting point.
- Since she walked more towards the door, her displacement from the starting point is the difference between the two distances:
- [tex]\[ \text{Displacement} = 4 \, \text{meters} - 2 \, \text{meters} = 2 \, \text{meters} \text{ to the left} \][/tex]
Now let's look at the provided tables:
- Option A:
[tex]\[ \begin{tabular}{|c|c|} \hline Distance & Displacement \\ \hline $2 m$ & $2 m$ to the left \\ \hline \end{tabular} \][/tex]
This option is incorrect because it lists the distance as [tex]\(2 \, \text{meters}\)[/tex] instead of the correct total distance of [tex]\(6 \, \text{meters}\)[/tex].
- Option B:
[tex]\[ \begin{tabular}{|c|c|} \hline Distance & Displacement \\ \hline $6 m$ & $2 m$ to the left \\ \hline \end{tabular} \][/tex]
This option correctly lists the total distance as [tex]\(6 \, \text{meters}\)[/tex] and the displacement as [tex]\(2 \, \text{meters}\)[/tex] to the left, which matches our calculations.
- Option C:
[tex]\[ \begin{tabular}{|c|c|} \hline Distance & Displacement \\ \hline $2 m$ & $6 m$ to the left \\ \hline \end{tabular} \][/tex]
This option is incorrect because both the distance and the displacement are incorrect.
- Option D:
[tex]\[ \begin{tabular}{|c|c|} \hline Distance & Displacement \\ \hline $6 m$ & $6 m$ to the left \\ \hline \end{tabular} \][/tex]
This option is incorrect because it incorrectly lists the displacement as [tex]\(6 \, \text{meters}\)[/tex] to the left.
Therefore, the correct table is:
Option B:
[tex]\[ \begin{tabular}{|c|c|} \hline Distance & Displacement \\ \hline $6 m$ & $2 m$ to the left \\ \hline \end{tabular} \][/tex]
1. First Leg of the Journey:
- Meg walks from her desk to the teacher's desk, which is a distance of [tex]\(2 \, \text{meters}\)[/tex].
2. Second Leg of the Journey:
- From the teacher's desk, Meg walks [tex]\(4 \, \text{meters}\)[/tex] in the opposite direction to the classroom door.
Total Distance Traveled:
- The total distance Meg travels is the sum of the distances of both legs of her journey.
- [tex]\[ \text{Total Distance} = 2 \, \text{meters} + 4 \, \text{meters} = 6 \, \text{meters} \][/tex]
Displacement:
- Displacement is a vector quantity, which means it has both magnitude and direction.
- Meg starts at her desk, walks [tex]\(2 \, \text{meters}\)[/tex] to the teacher's desk, then [tex]\(4 \, \text{meters}\)[/tex] in the opposite direction.
- Net displacement is determined by the final position relative to the starting point.
- Since she walked more towards the door, her displacement from the starting point is the difference between the two distances:
- [tex]\[ \text{Displacement} = 4 \, \text{meters} - 2 \, \text{meters} = 2 \, \text{meters} \text{ to the left} \][/tex]
Now let's look at the provided tables:
- Option A:
[tex]\[ \begin{tabular}{|c|c|} \hline Distance & Displacement \\ \hline $2 m$ & $2 m$ to the left \\ \hline \end{tabular} \][/tex]
This option is incorrect because it lists the distance as [tex]\(2 \, \text{meters}\)[/tex] instead of the correct total distance of [tex]\(6 \, \text{meters}\)[/tex].
- Option B:
[tex]\[ \begin{tabular}{|c|c|} \hline Distance & Displacement \\ \hline $6 m$ & $2 m$ to the left \\ \hline \end{tabular} \][/tex]
This option correctly lists the total distance as [tex]\(6 \, \text{meters}\)[/tex] and the displacement as [tex]\(2 \, \text{meters}\)[/tex] to the left, which matches our calculations.
- Option C:
[tex]\[ \begin{tabular}{|c|c|} \hline Distance & Displacement \\ \hline $2 m$ & $6 m$ to the left \\ \hline \end{tabular} \][/tex]
This option is incorrect because both the distance and the displacement are incorrect.
- Option D:
[tex]\[ \begin{tabular}{|c|c|} \hline Distance & Displacement \\ \hline $6 m$ & $6 m$ to the left \\ \hline \end{tabular} \][/tex]
This option is incorrect because it incorrectly lists the displacement as [tex]\(6 \, \text{meters}\)[/tex] to the left.
Therefore, the correct table is:
Option B:
[tex]\[ \begin{tabular}{|c|c|} \hline Distance & Displacement \\ \hline $6 m$ & $2 m$ to the left \\ \hline \end{tabular} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.