Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the value of [tex]\( n \)[/tex] given the equations [tex]\(\sqrt[3]{y^2} = \sqrt[6]{x}\)[/tex] and [tex]\( y = \sqrt[n]{x} \)[/tex], we will solve the system step-by-step.
### Step 1: Rewrite the first equation
The first equation is:
[tex]\[ \sqrt[3]{y^2} = \sqrt[6]{x} \][/tex]
This can be rewritten using exponents:
[tex]\[ (y^2)^{1/3} = x^{1/6} \][/tex]
Simplify the left side:
[tex]\[ y^{2/3} = x^{1/6} \][/tex]
### Step 2: Rewrite the second equation
The second equation is:
[tex]\[ y = \sqrt[n]{x} \][/tex]
This can also be rewritten using exponents:
[tex]\[ y = x^{1/n} \][/tex]
### Step 3: Substitute [tex]\( y \)[/tex] in the first equation
Substitute [tex]\( y = x^{1/n} \)[/tex] into the first equation [tex]\( y^{2/3} = x^{1/6} \)[/tex]:
[tex]\[ (x^{1/n})^{2/3} = x^{1/6} \][/tex]
Simplify the left side by multiplying the exponents:
[tex]\[ x^{(1/n) \cdot (2/3)} = x^{1/6} \][/tex]
This results in:
[tex]\[ x^{2/(3n)} = x^{1/6} \][/tex]
### Step 4: Equate the exponents
Since the bases are the same, the exponents must be equal:
[tex]\[ \frac{2}{3n} = \frac{1}{6} \][/tex]
### Step 5: Solve for [tex]\( n \)[/tex]
To solve for [tex]\( n \)[/tex], cross-multiply:
[tex]\[ 2 \cdot 6 = 1 \cdot 3n \][/tex]
Simplify:
[tex]\[ 12 = 3n \][/tex]
Divide both sides by 3:
[tex]\[ n = \frac{12}{3} \][/tex]
[tex]\[ n = 4 \][/tex]
### Conclusion
The value of [tex]\( n \)[/tex] is:
[tex]\[ \boxed{4} \][/tex]
### Step 1: Rewrite the first equation
The first equation is:
[tex]\[ \sqrt[3]{y^2} = \sqrt[6]{x} \][/tex]
This can be rewritten using exponents:
[tex]\[ (y^2)^{1/3} = x^{1/6} \][/tex]
Simplify the left side:
[tex]\[ y^{2/3} = x^{1/6} \][/tex]
### Step 2: Rewrite the second equation
The second equation is:
[tex]\[ y = \sqrt[n]{x} \][/tex]
This can also be rewritten using exponents:
[tex]\[ y = x^{1/n} \][/tex]
### Step 3: Substitute [tex]\( y \)[/tex] in the first equation
Substitute [tex]\( y = x^{1/n} \)[/tex] into the first equation [tex]\( y^{2/3} = x^{1/6} \)[/tex]:
[tex]\[ (x^{1/n})^{2/3} = x^{1/6} \][/tex]
Simplify the left side by multiplying the exponents:
[tex]\[ x^{(1/n) \cdot (2/3)} = x^{1/6} \][/tex]
This results in:
[tex]\[ x^{2/(3n)} = x^{1/6} \][/tex]
### Step 4: Equate the exponents
Since the bases are the same, the exponents must be equal:
[tex]\[ \frac{2}{3n} = \frac{1}{6} \][/tex]
### Step 5: Solve for [tex]\( n \)[/tex]
To solve for [tex]\( n \)[/tex], cross-multiply:
[tex]\[ 2 \cdot 6 = 1 \cdot 3n \][/tex]
Simplify:
[tex]\[ 12 = 3n \][/tex]
Divide both sides by 3:
[tex]\[ n = \frac{12}{3} \][/tex]
[tex]\[ n = 4 \][/tex]
### Conclusion
The value of [tex]\( n \)[/tex] is:
[tex]\[ \boxed{4} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.