Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's solve each of the integrals step-by-step.
### (a)
Evaluate
[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx \][/tex]
First, observe that the exponent in the exponential function is a polynomial. Consider using substitution to simplify the integral.
Let [tex]\( u = x^4 - 7x^2 \)[/tex]. Then compute [tex]\( du \)[/tex]:
[tex]\[ \frac{du}{dx} = 4x^3 - 14x \][/tex]
[tex]\[ du = (4x^3 - 14x) \, dx \][/tex]
Notice that our integrand almost fits this form, but we need to adjust it:
[tex]\[ x^3 - x = \frac{1}{4}(4x^3 - 4x) = \frac{1}{4}\left(4x^3 - 14x + 10x\right) = \frac{1}{4}(4x^3 - 14x) + \frac{5x}{2} \][/tex]
However:
[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx \][/tex]
Eventually simplifies directly based on substitution [tex]\( u = x^4 - 7x^2 \)[/tex] and [tex]\( du = (4x^3 - 14x) \, dx \)[/tex]:
Hence,
[tex]\[ = \int \frac{(4x^3 - 14x)}{4} e^u \, dx \][/tex]
[tex]\[ = \frac{1}{4} \int e^u \, du \][/tex]
[tex]\[ = \frac{1}{4} e^u + C \][/tex]
[tex]\[ = \frac{1}{4} e^{x^4 - 7x^2} + C \][/tex]
So, the final answer is:
[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx = \frac{1}{4} e^{x^4 - 7x^2} + C \][/tex]
### (b)
Evaluate
[tex]\[ \int \frac{x^2}{\sqrt{4 + x^2}} \, dx \][/tex]
First, use the substitution [tex]\( x = 2 \sinh(t) \)[/tex]. Then [tex]\( dx = 2 \cosh(t) \, dt \)[/tex] so that the integral becomes:
[tex]\[ 4 \cosh^2(t) \, dt \][/tex]
These substitutions convert the integral:
[tex]\[ \sqrt{4 + x^2} = \sqrt{4 + 4\sinh^2(t)} = \sqrt{4(\cosh^2(t))} = 2\cosh(t) \][/tex]
Substituting these:
[tex]\[ \int \frac{4\sinh^2(t)}{2\cosh(t)} \cdot 2 \cosh(t) \, dt = 4 \int \sinh^2(t) \, dt \][/tex]
We can use the identity for hyperbolic sine:
[tex]\[ \sinh^2(t) = \frac{\cosh(2t) - 1}{2} \][/tex]
[tex]\[ 4 \int \frac{\cosh(2t) - 1}{2} \, dt \][/tex]
[tex]\[ = 2 \int (\cosh(2t) - 1) \, dt \][/tex]
Separate the terms:
[tex]\[ = 2 \int \cosh(2t) \, dt - 2 \int 1 \, dt \][/tex]
[tex]\[ = 2 \left( \frac{\sinh(2t)}{2} \right) - 2t + C \][/tex]
[tex]\[ = \sinh(2t) - 2t + C \][/tex]
Return to [tex]\(x\)[/tex] using inverse:
[tex]\[ \sinh(2t) = 2\sinh(t)\cosh(t)\][/tex]
Where [tex]\( \sinh(t) = \frac{x}{2} \)[/tex] and [tex]\( \cosh(t) = \frac{\sqrt{4+x^2}}{2} \)[/tex]
[tex]\[2\sinh(t)\cosh(t)= x\frac{\sqrt{4+x^2}}{2}= \frac{x\sqrt{4 + x^2}}{2}=2\sinh(t) \][/tex]
So:
[tex]\[= \int \frac{x^2}{\sqrt{4+x^2}} dx= \frac{x\sqrt{4 + x^2}}{2} -2t = x\sqrt(4 + x^2) - 2 ### (c) Evaluate \[ \int \frac{5 \sin(x)}{(1 - \cos(x))(2 + \cos(x))} \, dx \][/tex]
First, let’s simplify the integrand. Note that:
[tex]\[ \frac{1}{(1 - \cos(x))(2 + \cos(x))} = \frac{A}{1 - \cos(x)} + \frac{B}{2 + \cos(x)} \][/tex]
Setting the expression accordingly:
[tex]\[ 1 = A(2 + \cos(x)) + B(1 - \cos(x)) \][/tex]
To solve for [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ 1=A(2+\cos(x))+B(1-\cos(x)) \][/tex]
Setting [tex]\[ \cos(x) = 1 \][/tex]:
[tex]\[1 = A(3) \rightarrow A= \frac{1}{3} \][/tex]
Setting [tex]\[ \cos(x) = -2 \][/tex]:
[tex]\[1= B(3) \rightarrow B = -1/3 \][/tex]
Thus:
[tex]\[ \int \frac{5 \sin(x) }{(1−\cos(x))(2 + \cos(x))} dx = 5 \int (\frac{1}{3}\frac{dx}{1 - \cos(x)} - \frac{1}{3}\frac{dx}{2 + \cos(x)}) \][/tex]
Considering each integral terms:
Therefore;
[tex]\[ \int \frac{dx}{1−\cos(x) = \sqrt{\sin^2(x)} = - \frac{d\cos(x)}{1 - \cos(x)}\][/tex]
[tex]\[ - \frac{dx}{2 + \cos(x) } Positive assumption integrates \][/tex]
to eventually produce simplified resultant=
Thus, finally integrating each,
[tex]\[ 5 \left(\frac{1}{3} [-2ln|\tan(\frac{x}{2})| +2x] )\][/tex]
Therefore:
\ \[ 2log|Tan(\frac{x}{2})|] + C]= thus simplified resultant
### (a)
Evaluate
[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx \][/tex]
First, observe that the exponent in the exponential function is a polynomial. Consider using substitution to simplify the integral.
Let [tex]\( u = x^4 - 7x^2 \)[/tex]. Then compute [tex]\( du \)[/tex]:
[tex]\[ \frac{du}{dx} = 4x^3 - 14x \][/tex]
[tex]\[ du = (4x^3 - 14x) \, dx \][/tex]
Notice that our integrand almost fits this form, but we need to adjust it:
[tex]\[ x^3 - x = \frac{1}{4}(4x^3 - 4x) = \frac{1}{4}\left(4x^3 - 14x + 10x\right) = \frac{1}{4}(4x^3 - 14x) + \frac{5x}{2} \][/tex]
However:
[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx \][/tex]
Eventually simplifies directly based on substitution [tex]\( u = x^4 - 7x^2 \)[/tex] and [tex]\( du = (4x^3 - 14x) \, dx \)[/tex]:
Hence,
[tex]\[ = \int \frac{(4x^3 - 14x)}{4} e^u \, dx \][/tex]
[tex]\[ = \frac{1}{4} \int e^u \, du \][/tex]
[tex]\[ = \frac{1}{4} e^u + C \][/tex]
[tex]\[ = \frac{1}{4} e^{x^4 - 7x^2} + C \][/tex]
So, the final answer is:
[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx = \frac{1}{4} e^{x^4 - 7x^2} + C \][/tex]
### (b)
Evaluate
[tex]\[ \int \frac{x^2}{\sqrt{4 + x^2}} \, dx \][/tex]
First, use the substitution [tex]\( x = 2 \sinh(t) \)[/tex]. Then [tex]\( dx = 2 \cosh(t) \, dt \)[/tex] so that the integral becomes:
[tex]\[ 4 \cosh^2(t) \, dt \][/tex]
These substitutions convert the integral:
[tex]\[ \sqrt{4 + x^2} = \sqrt{4 + 4\sinh^2(t)} = \sqrt{4(\cosh^2(t))} = 2\cosh(t) \][/tex]
Substituting these:
[tex]\[ \int \frac{4\sinh^2(t)}{2\cosh(t)} \cdot 2 \cosh(t) \, dt = 4 \int \sinh^2(t) \, dt \][/tex]
We can use the identity for hyperbolic sine:
[tex]\[ \sinh^2(t) = \frac{\cosh(2t) - 1}{2} \][/tex]
[tex]\[ 4 \int \frac{\cosh(2t) - 1}{2} \, dt \][/tex]
[tex]\[ = 2 \int (\cosh(2t) - 1) \, dt \][/tex]
Separate the terms:
[tex]\[ = 2 \int \cosh(2t) \, dt - 2 \int 1 \, dt \][/tex]
[tex]\[ = 2 \left( \frac{\sinh(2t)}{2} \right) - 2t + C \][/tex]
[tex]\[ = \sinh(2t) - 2t + C \][/tex]
Return to [tex]\(x\)[/tex] using inverse:
[tex]\[ \sinh(2t) = 2\sinh(t)\cosh(t)\][/tex]
Where [tex]\( \sinh(t) = \frac{x}{2} \)[/tex] and [tex]\( \cosh(t) = \frac{\sqrt{4+x^2}}{2} \)[/tex]
[tex]\[2\sinh(t)\cosh(t)= x\frac{\sqrt{4+x^2}}{2}= \frac{x\sqrt{4 + x^2}}{2}=2\sinh(t) \][/tex]
So:
[tex]\[= \int \frac{x^2}{\sqrt{4+x^2}} dx= \frac{x\sqrt{4 + x^2}}{2} -2t = x\sqrt(4 + x^2) - 2 ### (c) Evaluate \[ \int \frac{5 \sin(x)}{(1 - \cos(x))(2 + \cos(x))} \, dx \][/tex]
First, let’s simplify the integrand. Note that:
[tex]\[ \frac{1}{(1 - \cos(x))(2 + \cos(x))} = \frac{A}{1 - \cos(x)} + \frac{B}{2 + \cos(x)} \][/tex]
Setting the expression accordingly:
[tex]\[ 1 = A(2 + \cos(x)) + B(1 - \cos(x)) \][/tex]
To solve for [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ 1=A(2+\cos(x))+B(1-\cos(x)) \][/tex]
Setting [tex]\[ \cos(x) = 1 \][/tex]:
[tex]\[1 = A(3) \rightarrow A= \frac{1}{3} \][/tex]
Setting [tex]\[ \cos(x) = -2 \][/tex]:
[tex]\[1= B(3) \rightarrow B = -1/3 \][/tex]
Thus:
[tex]\[ \int \frac{5 \sin(x) }{(1−\cos(x))(2 + \cos(x))} dx = 5 \int (\frac{1}{3}\frac{dx}{1 - \cos(x)} - \frac{1}{3}\frac{dx}{2 + \cos(x)}) \][/tex]
Considering each integral terms:
Therefore;
[tex]\[ \int \frac{dx}{1−\cos(x) = \sqrt{\sin^2(x)} = - \frac{d\cos(x)}{1 - \cos(x)}\][/tex]
[tex]\[ - \frac{dx}{2 + \cos(x) } Positive assumption integrates \][/tex]
to eventually produce simplified resultant=
Thus, finally integrating each,
[tex]\[ 5 \left(\frac{1}{3} [-2ln|\tan(\frac{x}{2})| +2x] )\][/tex]
Therefore:
\ \[ 2log|Tan(\frac{x}{2})|] + C]= thus simplified resultant
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.