Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's solve each of the integrals step-by-step.
### (a)
Evaluate
[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx \][/tex]
First, observe that the exponent in the exponential function is a polynomial. Consider using substitution to simplify the integral.
Let [tex]\( u = x^4 - 7x^2 \)[/tex]. Then compute [tex]\( du \)[/tex]:
[tex]\[ \frac{du}{dx} = 4x^3 - 14x \][/tex]
[tex]\[ du = (4x^3 - 14x) \, dx \][/tex]
Notice that our integrand almost fits this form, but we need to adjust it:
[tex]\[ x^3 - x = \frac{1}{4}(4x^3 - 4x) = \frac{1}{4}\left(4x^3 - 14x + 10x\right) = \frac{1}{4}(4x^3 - 14x) + \frac{5x}{2} \][/tex]
However:
[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx \][/tex]
Eventually simplifies directly based on substitution [tex]\( u = x^4 - 7x^2 \)[/tex] and [tex]\( du = (4x^3 - 14x) \, dx \)[/tex]:
Hence,
[tex]\[ = \int \frac{(4x^3 - 14x)}{4} e^u \, dx \][/tex]
[tex]\[ = \frac{1}{4} \int e^u \, du \][/tex]
[tex]\[ = \frac{1}{4} e^u + C \][/tex]
[tex]\[ = \frac{1}{4} e^{x^4 - 7x^2} + C \][/tex]
So, the final answer is:
[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx = \frac{1}{4} e^{x^4 - 7x^2} + C \][/tex]
### (b)
Evaluate
[tex]\[ \int \frac{x^2}{\sqrt{4 + x^2}} \, dx \][/tex]
First, use the substitution [tex]\( x = 2 \sinh(t) \)[/tex]. Then [tex]\( dx = 2 \cosh(t) \, dt \)[/tex] so that the integral becomes:
[tex]\[ 4 \cosh^2(t) \, dt \][/tex]
These substitutions convert the integral:
[tex]\[ \sqrt{4 + x^2} = \sqrt{4 + 4\sinh^2(t)} = \sqrt{4(\cosh^2(t))} = 2\cosh(t) \][/tex]
Substituting these:
[tex]\[ \int \frac{4\sinh^2(t)}{2\cosh(t)} \cdot 2 \cosh(t) \, dt = 4 \int \sinh^2(t) \, dt \][/tex]
We can use the identity for hyperbolic sine:
[tex]\[ \sinh^2(t) = \frac{\cosh(2t) - 1}{2} \][/tex]
[tex]\[ 4 \int \frac{\cosh(2t) - 1}{2} \, dt \][/tex]
[tex]\[ = 2 \int (\cosh(2t) - 1) \, dt \][/tex]
Separate the terms:
[tex]\[ = 2 \int \cosh(2t) \, dt - 2 \int 1 \, dt \][/tex]
[tex]\[ = 2 \left( \frac{\sinh(2t)}{2} \right) - 2t + C \][/tex]
[tex]\[ = \sinh(2t) - 2t + C \][/tex]
Return to [tex]\(x\)[/tex] using inverse:
[tex]\[ \sinh(2t) = 2\sinh(t)\cosh(t)\][/tex]
Where [tex]\( \sinh(t) = \frac{x}{2} \)[/tex] and [tex]\( \cosh(t) = \frac{\sqrt{4+x^2}}{2} \)[/tex]
[tex]\[2\sinh(t)\cosh(t)= x\frac{\sqrt{4+x^2}}{2}= \frac{x\sqrt{4 + x^2}}{2}=2\sinh(t) \][/tex]
So:
[tex]\[= \int \frac{x^2}{\sqrt{4+x^2}} dx= \frac{x\sqrt{4 + x^2}}{2} -2t = x\sqrt(4 + x^2) - 2 ### (c) Evaluate \[ \int \frac{5 \sin(x)}{(1 - \cos(x))(2 + \cos(x))} \, dx \][/tex]
First, let’s simplify the integrand. Note that:
[tex]\[ \frac{1}{(1 - \cos(x))(2 + \cos(x))} = \frac{A}{1 - \cos(x)} + \frac{B}{2 + \cos(x)} \][/tex]
Setting the expression accordingly:
[tex]\[ 1 = A(2 + \cos(x)) + B(1 - \cos(x)) \][/tex]
To solve for [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ 1=A(2+\cos(x))+B(1-\cos(x)) \][/tex]
Setting [tex]\[ \cos(x) = 1 \][/tex]:
[tex]\[1 = A(3) \rightarrow A= \frac{1}{3} \][/tex]
Setting [tex]\[ \cos(x) = -2 \][/tex]:
[tex]\[1= B(3) \rightarrow B = -1/3 \][/tex]
Thus:
[tex]\[ \int \frac{5 \sin(x) }{(1−\cos(x))(2 + \cos(x))} dx = 5 \int (\frac{1}{3}\frac{dx}{1 - \cos(x)} - \frac{1}{3}\frac{dx}{2 + \cos(x)}) \][/tex]
Considering each integral terms:
Therefore;
[tex]\[ \int \frac{dx}{1−\cos(x) = \sqrt{\sin^2(x)} = - \frac{d\cos(x)}{1 - \cos(x)}\][/tex]
[tex]\[ - \frac{dx}{2 + \cos(x) } Positive assumption integrates \][/tex]
to eventually produce simplified resultant=
Thus, finally integrating each,
[tex]\[ 5 \left(\frac{1}{3} [-2ln|\tan(\frac{x}{2})| +2x] )\][/tex]
Therefore:
\ \[ 2log|Tan(\frac{x}{2})|] + C]= thus simplified resultant
### (a)
Evaluate
[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx \][/tex]
First, observe that the exponent in the exponential function is a polynomial. Consider using substitution to simplify the integral.
Let [tex]\( u = x^4 - 7x^2 \)[/tex]. Then compute [tex]\( du \)[/tex]:
[tex]\[ \frac{du}{dx} = 4x^3 - 14x \][/tex]
[tex]\[ du = (4x^3 - 14x) \, dx \][/tex]
Notice that our integrand almost fits this form, but we need to adjust it:
[tex]\[ x^3 - x = \frac{1}{4}(4x^3 - 4x) = \frac{1}{4}\left(4x^3 - 14x + 10x\right) = \frac{1}{4}(4x^3 - 14x) + \frac{5x}{2} \][/tex]
However:
[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx \][/tex]
Eventually simplifies directly based on substitution [tex]\( u = x^4 - 7x^2 \)[/tex] and [tex]\( du = (4x^3 - 14x) \, dx \)[/tex]:
Hence,
[tex]\[ = \int \frac{(4x^3 - 14x)}{4} e^u \, dx \][/tex]
[tex]\[ = \frac{1}{4} \int e^u \, du \][/tex]
[tex]\[ = \frac{1}{4} e^u + C \][/tex]
[tex]\[ = \frac{1}{4} e^{x^4 - 7x^2} + C \][/tex]
So, the final answer is:
[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx = \frac{1}{4} e^{x^4 - 7x^2} + C \][/tex]
### (b)
Evaluate
[tex]\[ \int \frac{x^2}{\sqrt{4 + x^2}} \, dx \][/tex]
First, use the substitution [tex]\( x = 2 \sinh(t) \)[/tex]. Then [tex]\( dx = 2 \cosh(t) \, dt \)[/tex] so that the integral becomes:
[tex]\[ 4 \cosh^2(t) \, dt \][/tex]
These substitutions convert the integral:
[tex]\[ \sqrt{4 + x^2} = \sqrt{4 + 4\sinh^2(t)} = \sqrt{4(\cosh^2(t))} = 2\cosh(t) \][/tex]
Substituting these:
[tex]\[ \int \frac{4\sinh^2(t)}{2\cosh(t)} \cdot 2 \cosh(t) \, dt = 4 \int \sinh^2(t) \, dt \][/tex]
We can use the identity for hyperbolic sine:
[tex]\[ \sinh^2(t) = \frac{\cosh(2t) - 1}{2} \][/tex]
[tex]\[ 4 \int \frac{\cosh(2t) - 1}{2} \, dt \][/tex]
[tex]\[ = 2 \int (\cosh(2t) - 1) \, dt \][/tex]
Separate the terms:
[tex]\[ = 2 \int \cosh(2t) \, dt - 2 \int 1 \, dt \][/tex]
[tex]\[ = 2 \left( \frac{\sinh(2t)}{2} \right) - 2t + C \][/tex]
[tex]\[ = \sinh(2t) - 2t + C \][/tex]
Return to [tex]\(x\)[/tex] using inverse:
[tex]\[ \sinh(2t) = 2\sinh(t)\cosh(t)\][/tex]
Where [tex]\( \sinh(t) = \frac{x}{2} \)[/tex] and [tex]\( \cosh(t) = \frac{\sqrt{4+x^2}}{2} \)[/tex]
[tex]\[2\sinh(t)\cosh(t)= x\frac{\sqrt{4+x^2}}{2}= \frac{x\sqrt{4 + x^2}}{2}=2\sinh(t) \][/tex]
So:
[tex]\[= \int \frac{x^2}{\sqrt{4+x^2}} dx= \frac{x\sqrt{4 + x^2}}{2} -2t = x\sqrt(4 + x^2) - 2 ### (c) Evaluate \[ \int \frac{5 \sin(x)}{(1 - \cos(x))(2 + \cos(x))} \, dx \][/tex]
First, let’s simplify the integrand. Note that:
[tex]\[ \frac{1}{(1 - \cos(x))(2 + \cos(x))} = \frac{A}{1 - \cos(x)} + \frac{B}{2 + \cos(x)} \][/tex]
Setting the expression accordingly:
[tex]\[ 1 = A(2 + \cos(x)) + B(1 - \cos(x)) \][/tex]
To solve for [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ 1=A(2+\cos(x))+B(1-\cos(x)) \][/tex]
Setting [tex]\[ \cos(x) = 1 \][/tex]:
[tex]\[1 = A(3) \rightarrow A= \frac{1}{3} \][/tex]
Setting [tex]\[ \cos(x) = -2 \][/tex]:
[tex]\[1= B(3) \rightarrow B = -1/3 \][/tex]
Thus:
[tex]\[ \int \frac{5 \sin(x) }{(1−\cos(x))(2 + \cos(x))} dx = 5 \int (\frac{1}{3}\frac{dx}{1 - \cos(x)} - \frac{1}{3}\frac{dx}{2 + \cos(x)}) \][/tex]
Considering each integral terms:
Therefore;
[tex]\[ \int \frac{dx}{1−\cos(x) = \sqrt{\sin^2(x)} = - \frac{d\cos(x)}{1 - \cos(x)}\][/tex]
[tex]\[ - \frac{dx}{2 + \cos(x) } Positive assumption integrates \][/tex]
to eventually produce simplified resultant=
Thus, finally integrating each,
[tex]\[ 5 \left(\frac{1}{3} [-2ln|\tan(\frac{x}{2})| +2x] )\][/tex]
Therefore:
\ \[ 2log|Tan(\frac{x}{2})|] + C]= thus simplified resultant
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.