Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To predict the rate for Experiment 4, we need to determine the rate law for the reaction. The rate law has the general form:
[tex]\[ \text{rate} = k \times [\text{NO}]^m \times [\text{Cl}_2]^n \][/tex]
where:
- [tex]\( k \)[/tex] is the rate constant,
- [tex]\( m \)[/tex] is the order of reaction with respect to NO,
- [tex]\( n \)[/tex] is the order of reaction with respect to Cl[tex]\(_2\)[/tex].
We can determine the values of [tex]\( m \)[/tex], [tex]\( n \)[/tex], and [tex]\( k \)[/tex] using the provided experimental data.
### Step-by-Step Solution
1. Determine the reaction order with respect to Cl[tex]\(_2\)[/tex] ( [tex]\( n \)[/tex] ):
Use data from Experiments 1 and 2, where NO concentration is constant and Cl[tex]\(_2\)[/tex] concentration varies.
[tex]\[ \frac{\text{rate}_2}{\text{rate}_1} = \left( \frac{[\text{NO}]_2}{[\text{NO}]_1} \right)^m \times \left( \frac{[\text{Cl}_2]_2}{[\text{Cl}_2]_1} \right)^n \][/tex]
Given:
[tex]\[ \frac{5.70}{0.63} = \left( \frac{0.20}{0.20} \right)^m \times \left( \frac{0.30}{0.10} \right)^n \][/tex]
Simplifying:
[tex]\[ 9 = 1 \times 3^n \][/tex]
Therefore:
[tex]\[ 9 = 3^n \implies n = 2 \][/tex]
2. Determine the reaction order with respect to NO ( [tex]\( m \)[/tex] ):
Use data from Experiments 1 and 3, where Cl[tex]\(_2\)[/tex] concentration is constant and NO concentration varies.
[tex]\[ \frac{\text{rate}_3}{\text{rate}_1} = \left( \frac{[\text{NO}]_3}{[\text{NO}]_1} \right)^m \times \left( \frac{[\text{Cl}_2]_3}{[\text{Cl}_2]_1} \right)^n \][/tex]
Given:
[tex]\[ \frac{2.58}{0.63} = \left( \frac{0.80}{0.20} \right)^m \times \left( \frac{0.10}{0.10} \right)^2 \][/tex]
Simplifying:
[tex]\[ 4.1 = 4^m \times 1 \][/tex]
Therefore:
[tex]\[ 4.1 = 4^m \implies m = 1 \][/tex]
3. Calculate the rate constant ([tex]\( k \)[/tex]) using data from one experiment:
Using data from Experiment 1:
[tex]\[ \text{rate} = k \times [\text{NO}]^1 \times [\text{Cl}_2]^2 \][/tex]
[tex]\[ 0.63 = k \times (0.20)^1 \times (0.10)^2 \][/tex]
Simplifying:
[tex]\[ 0.63 = k \times 0.20 \times 0.01 \][/tex]
[tex]\[ 0.63 = k \times 0.002 \][/tex]
Therefore:
[tex]\[ k = \frac{0.63}{0.002} = 315 \][/tex]
4. Predict the rate for Experiment 4:
Using the rate law:
[tex]\[ \text{rate}_4 = k \times [\text{NO}]^1 \times [\text{Cl}_2]^2 \][/tex]
Given concentrations for Experiment 4:
[tex]\[ [\text{NO}] = 0.40 \quad \text{and} \quad [\text{Cl}_2] = 0.20 \][/tex]
[tex]\[ \text{rate}_4 = 315 \times (0.40)^1 \times (0.20)^2 \][/tex]
Calculating:
[tex]\[ \text{rate}_4 = 315 \times 0.40 \times 0.04 \][/tex]
[tex]\[ \text{rate}_4 = 315 \times 0.016 \][/tex]
[tex]\[ \text{rate}_4 = 5.04 \][/tex]
So, the predicted rate for Experiment 4 is:
[tex]\[ \boxed{5.04 \, \text{M/s}} \][/tex]
[tex]\[ \text{rate} = k \times [\text{NO}]^m \times [\text{Cl}_2]^n \][/tex]
where:
- [tex]\( k \)[/tex] is the rate constant,
- [tex]\( m \)[/tex] is the order of reaction with respect to NO,
- [tex]\( n \)[/tex] is the order of reaction with respect to Cl[tex]\(_2\)[/tex].
We can determine the values of [tex]\( m \)[/tex], [tex]\( n \)[/tex], and [tex]\( k \)[/tex] using the provided experimental data.
### Step-by-Step Solution
1. Determine the reaction order with respect to Cl[tex]\(_2\)[/tex] ( [tex]\( n \)[/tex] ):
Use data from Experiments 1 and 2, where NO concentration is constant and Cl[tex]\(_2\)[/tex] concentration varies.
[tex]\[ \frac{\text{rate}_2}{\text{rate}_1} = \left( \frac{[\text{NO}]_2}{[\text{NO}]_1} \right)^m \times \left( \frac{[\text{Cl}_2]_2}{[\text{Cl}_2]_1} \right)^n \][/tex]
Given:
[tex]\[ \frac{5.70}{0.63} = \left( \frac{0.20}{0.20} \right)^m \times \left( \frac{0.30}{0.10} \right)^n \][/tex]
Simplifying:
[tex]\[ 9 = 1 \times 3^n \][/tex]
Therefore:
[tex]\[ 9 = 3^n \implies n = 2 \][/tex]
2. Determine the reaction order with respect to NO ( [tex]\( m \)[/tex] ):
Use data from Experiments 1 and 3, where Cl[tex]\(_2\)[/tex] concentration is constant and NO concentration varies.
[tex]\[ \frac{\text{rate}_3}{\text{rate}_1} = \left( \frac{[\text{NO}]_3}{[\text{NO}]_1} \right)^m \times \left( \frac{[\text{Cl}_2]_3}{[\text{Cl}_2]_1} \right)^n \][/tex]
Given:
[tex]\[ \frac{2.58}{0.63} = \left( \frac{0.80}{0.20} \right)^m \times \left( \frac{0.10}{0.10} \right)^2 \][/tex]
Simplifying:
[tex]\[ 4.1 = 4^m \times 1 \][/tex]
Therefore:
[tex]\[ 4.1 = 4^m \implies m = 1 \][/tex]
3. Calculate the rate constant ([tex]\( k \)[/tex]) using data from one experiment:
Using data from Experiment 1:
[tex]\[ \text{rate} = k \times [\text{NO}]^1 \times [\text{Cl}_2]^2 \][/tex]
[tex]\[ 0.63 = k \times (0.20)^1 \times (0.10)^2 \][/tex]
Simplifying:
[tex]\[ 0.63 = k \times 0.20 \times 0.01 \][/tex]
[tex]\[ 0.63 = k \times 0.002 \][/tex]
Therefore:
[tex]\[ k = \frac{0.63}{0.002} = 315 \][/tex]
4. Predict the rate for Experiment 4:
Using the rate law:
[tex]\[ \text{rate}_4 = k \times [\text{NO}]^1 \times [\text{Cl}_2]^2 \][/tex]
Given concentrations for Experiment 4:
[tex]\[ [\text{NO}] = 0.40 \quad \text{and} \quad [\text{Cl}_2] = 0.20 \][/tex]
[tex]\[ \text{rate}_4 = 315 \times (0.40)^1 \times (0.20)^2 \][/tex]
Calculating:
[tex]\[ \text{rate}_4 = 315 \times 0.40 \times 0.04 \][/tex]
[tex]\[ \text{rate}_4 = 315 \times 0.016 \][/tex]
[tex]\[ \text{rate}_4 = 5.04 \][/tex]
So, the predicted rate for Experiment 4 is:
[tex]\[ \boxed{5.04 \, \text{M/s}} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.