Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To predict the rate for Experiment 4, we need to determine the rate law for the reaction. The rate law has the general form:
[tex]\[ \text{rate} = k \times [\text{NO}]^m \times [\text{Cl}_2]^n \][/tex]
where:
- [tex]\( k \)[/tex] is the rate constant,
- [tex]\( m \)[/tex] is the order of reaction with respect to NO,
- [tex]\( n \)[/tex] is the order of reaction with respect to Cl[tex]\(_2\)[/tex].
We can determine the values of [tex]\( m \)[/tex], [tex]\( n \)[/tex], and [tex]\( k \)[/tex] using the provided experimental data.
### Step-by-Step Solution
1. Determine the reaction order with respect to Cl[tex]\(_2\)[/tex] ( [tex]\( n \)[/tex] ):
Use data from Experiments 1 and 2, where NO concentration is constant and Cl[tex]\(_2\)[/tex] concentration varies.
[tex]\[ \frac{\text{rate}_2}{\text{rate}_1} = \left( \frac{[\text{NO}]_2}{[\text{NO}]_1} \right)^m \times \left( \frac{[\text{Cl}_2]_2}{[\text{Cl}_2]_1} \right)^n \][/tex]
Given:
[tex]\[ \frac{5.70}{0.63} = \left( \frac{0.20}{0.20} \right)^m \times \left( \frac{0.30}{0.10} \right)^n \][/tex]
Simplifying:
[tex]\[ 9 = 1 \times 3^n \][/tex]
Therefore:
[tex]\[ 9 = 3^n \implies n = 2 \][/tex]
2. Determine the reaction order with respect to NO ( [tex]\( m \)[/tex] ):
Use data from Experiments 1 and 3, where Cl[tex]\(_2\)[/tex] concentration is constant and NO concentration varies.
[tex]\[ \frac{\text{rate}_3}{\text{rate}_1} = \left( \frac{[\text{NO}]_3}{[\text{NO}]_1} \right)^m \times \left( \frac{[\text{Cl}_2]_3}{[\text{Cl}_2]_1} \right)^n \][/tex]
Given:
[tex]\[ \frac{2.58}{0.63} = \left( \frac{0.80}{0.20} \right)^m \times \left( \frac{0.10}{0.10} \right)^2 \][/tex]
Simplifying:
[tex]\[ 4.1 = 4^m \times 1 \][/tex]
Therefore:
[tex]\[ 4.1 = 4^m \implies m = 1 \][/tex]
3. Calculate the rate constant ([tex]\( k \)[/tex]) using data from one experiment:
Using data from Experiment 1:
[tex]\[ \text{rate} = k \times [\text{NO}]^1 \times [\text{Cl}_2]^2 \][/tex]
[tex]\[ 0.63 = k \times (0.20)^1 \times (0.10)^2 \][/tex]
Simplifying:
[tex]\[ 0.63 = k \times 0.20 \times 0.01 \][/tex]
[tex]\[ 0.63 = k \times 0.002 \][/tex]
Therefore:
[tex]\[ k = \frac{0.63}{0.002} = 315 \][/tex]
4. Predict the rate for Experiment 4:
Using the rate law:
[tex]\[ \text{rate}_4 = k \times [\text{NO}]^1 \times [\text{Cl}_2]^2 \][/tex]
Given concentrations for Experiment 4:
[tex]\[ [\text{NO}] = 0.40 \quad \text{and} \quad [\text{Cl}_2] = 0.20 \][/tex]
[tex]\[ \text{rate}_4 = 315 \times (0.40)^1 \times (0.20)^2 \][/tex]
Calculating:
[tex]\[ \text{rate}_4 = 315 \times 0.40 \times 0.04 \][/tex]
[tex]\[ \text{rate}_4 = 315 \times 0.016 \][/tex]
[tex]\[ \text{rate}_4 = 5.04 \][/tex]
So, the predicted rate for Experiment 4 is:
[tex]\[ \boxed{5.04 \, \text{M/s}} \][/tex]
[tex]\[ \text{rate} = k \times [\text{NO}]^m \times [\text{Cl}_2]^n \][/tex]
where:
- [tex]\( k \)[/tex] is the rate constant,
- [tex]\( m \)[/tex] is the order of reaction with respect to NO,
- [tex]\( n \)[/tex] is the order of reaction with respect to Cl[tex]\(_2\)[/tex].
We can determine the values of [tex]\( m \)[/tex], [tex]\( n \)[/tex], and [tex]\( k \)[/tex] using the provided experimental data.
### Step-by-Step Solution
1. Determine the reaction order with respect to Cl[tex]\(_2\)[/tex] ( [tex]\( n \)[/tex] ):
Use data from Experiments 1 and 2, where NO concentration is constant and Cl[tex]\(_2\)[/tex] concentration varies.
[tex]\[ \frac{\text{rate}_2}{\text{rate}_1} = \left( \frac{[\text{NO}]_2}{[\text{NO}]_1} \right)^m \times \left( \frac{[\text{Cl}_2]_2}{[\text{Cl}_2]_1} \right)^n \][/tex]
Given:
[tex]\[ \frac{5.70}{0.63} = \left( \frac{0.20}{0.20} \right)^m \times \left( \frac{0.30}{0.10} \right)^n \][/tex]
Simplifying:
[tex]\[ 9 = 1 \times 3^n \][/tex]
Therefore:
[tex]\[ 9 = 3^n \implies n = 2 \][/tex]
2. Determine the reaction order with respect to NO ( [tex]\( m \)[/tex] ):
Use data from Experiments 1 and 3, where Cl[tex]\(_2\)[/tex] concentration is constant and NO concentration varies.
[tex]\[ \frac{\text{rate}_3}{\text{rate}_1} = \left( \frac{[\text{NO}]_3}{[\text{NO}]_1} \right)^m \times \left( \frac{[\text{Cl}_2]_3}{[\text{Cl}_2]_1} \right)^n \][/tex]
Given:
[tex]\[ \frac{2.58}{0.63} = \left( \frac{0.80}{0.20} \right)^m \times \left( \frac{0.10}{0.10} \right)^2 \][/tex]
Simplifying:
[tex]\[ 4.1 = 4^m \times 1 \][/tex]
Therefore:
[tex]\[ 4.1 = 4^m \implies m = 1 \][/tex]
3. Calculate the rate constant ([tex]\( k \)[/tex]) using data from one experiment:
Using data from Experiment 1:
[tex]\[ \text{rate} = k \times [\text{NO}]^1 \times [\text{Cl}_2]^2 \][/tex]
[tex]\[ 0.63 = k \times (0.20)^1 \times (0.10)^2 \][/tex]
Simplifying:
[tex]\[ 0.63 = k \times 0.20 \times 0.01 \][/tex]
[tex]\[ 0.63 = k \times 0.002 \][/tex]
Therefore:
[tex]\[ k = \frac{0.63}{0.002} = 315 \][/tex]
4. Predict the rate for Experiment 4:
Using the rate law:
[tex]\[ \text{rate}_4 = k \times [\text{NO}]^1 \times [\text{Cl}_2]^2 \][/tex]
Given concentrations for Experiment 4:
[tex]\[ [\text{NO}] = 0.40 \quad \text{and} \quad [\text{Cl}_2] = 0.20 \][/tex]
[tex]\[ \text{rate}_4 = 315 \times (0.40)^1 \times (0.20)^2 \][/tex]
Calculating:
[tex]\[ \text{rate}_4 = 315 \times 0.40 \times 0.04 \][/tex]
[tex]\[ \text{rate}_4 = 315 \times 0.016 \][/tex]
[tex]\[ \text{rate}_4 = 5.04 \][/tex]
So, the predicted rate for Experiment 4 is:
[tex]\[ \boxed{5.04 \, \text{M/s}} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.