Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Select the correct answer.

Find the quotient:
[tex]\[ \frac{2x-3}{x} \div \frac{7}{x^2} \][/tex]

A. [tex]\(\frac{7}{x(2x-3)}\)[/tex]

B. [tex]\(\frac{7x}{2x-3}\)[/tex]

C. [tex]\(\frac{2x-3}{7x}\)[/tex]

D. [tex]\(\frac{x(2x-3)}{7}\)[/tex]


Sagot :

To solve the problem, we need to find the quotient of two fractions involving [tex]\( x \)[/tex]:
[tex]\[ \frac{2x-3}{x} \div \frac{7}{x^2} \][/tex]

The division of fractions can be handled by multiplying by the reciprocal of the second fraction. In other words, we have:

[tex]\[ \frac{2x-3}{x} \div \frac{7}{x^2} = \frac{2x-3}{x} \times \frac{x^2}{7} \][/tex]

Let's perform this multiplication step-by-step:

1. Numerator Multiplication:
[tex]\[ (2x - 3) \times x^2 = (2x-3)x^2 = 2x^3 - 3x^2 \][/tex]

2. Denominator Multiplication:
[tex]\[ x \times 7 = 7x \][/tex]

3. Putting it Together:
[tex]\[ \frac{(2x-3)x^2}{7x} = \frac{2x^3 - 3x^2}{7x} \][/tex]

4. Simplifying the Fraction:
To simplify [tex]\(\frac{2x^3 - 3x^2}{7x}\)[/tex], divide each term in the numerator by [tex]\( x \)[/tex]:
[tex]\[ \frac{2x^3 - 3x^2}{7x} = \frac{2x^2(2x-3)}{7x(2x-3)} \][/tex]

Simplifying further by canceling common terms:
- The numerator [tex]\( 2x^3 - 3x^2 \)[/tex] can be written as [tex]\( x(2x^2 - 3) \)[/tex].
- The denominator remains [tex]\( 7x \)[/tex].

Finally, observe that the [tex]\( x \)[/tex] in the numerator and denominator cancels each other out, leaving:
[tex]\[ = \frac{x(2x-3)}{7} \][/tex]

Thus, the resulting simplified quotient is:
[tex]\[ \frac{x(2x-3)}{7} \][/tex]

So, the correct answer is:
[tex]\[ \boxed{D. \frac{x(2x-3)}{7}} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.