Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's break down the problem step-by-step:
### Given:
1. Electric field, [tex]\(\overrightarrow{E} = -6.80 \times 10^5 \, \text{N/C}\)[/tex] in the [tex]\(x\)[/tex]-direction.
2. Distance traveled by the proton before coming to rest, [tex]\( d = 6.90 \,\text{cm} = 0.069 \,\text{m} \)[/tex].
3. Proton charge, [tex]\( q = 1.60 \times 10^{-19} \, \text{C} \)[/tex].
4. Proton mass, [tex]\( m = 1.67 \times 10^{-27} \, \text{kg} \)[/tex].
### Step-by-step solution:
#### (a) Determine the acceleration of the proton.
1. Find the force on the proton due to the electric field:
[tex]\[ F = qE \][/tex]
Substituting the values:
[tex]\[ F = (1.60 \times 10^{-19} \, \text{C}) \times (-6.80 \times 10^5 \, \text{N/C}) = -1.088 \times 10^{-13} \, \text{N} \][/tex]
2. Use Newton's second law to find the acceleration ([tex]\( a \)[/tex]) of the proton:
[tex]\[ F = ma \][/tex]
[tex]\[ a = \frac{F}{m} = \frac{-1.088 \times 10^{-13} \, \text{N}}{1.67 \times 10^{-27} \, \text{kg}} \approx -6.52 \times 10^{13} \, \text{m/s}^2 \][/tex]
3. The magnitude of the acceleration is:
[tex]\[ 6.52 \times 10^{13} \, \text{m/s}^2 \][/tex]
4. The direction of the acceleration is in the negative [tex]\(x\)[/tex]-direction (opposite to the direction of the electric field).
Therefore, the acceleration of the proton is:
- Magnitude: [tex]\( 6.52 \times 10^{13} \, \text{m/s}^2 \)[/tex]
- Direction: Negative [tex]\(x\)[/tex]-direction
#### (b) Determine the initial speed of the proton.
1. Use the kinematic equation:
[tex]\[ v_f^2 = v_i^2 + 2ad \][/tex]
Since the proton comes to rest, [tex]\( v_f = 0 \)[/tex]. Therefore:
[tex]\[ 0 = v_i^2 + 2(-6.52 \times 10^{13} \, \text{m/s}^2)(0.069 \, \text{m}) \][/tex]
Solving for [tex]\( v_i \)[/tex]:
[tex]\[ v_i^2 = -2 \cdot (-6.52 \times 10^{13} \, \text{m/s}^2) \cdot 0.069 \, \text{m} \][/tex]
[tex]\[ v_i^2 = 8.99 \times 10^{12} \, \text{m}^2/\text{s}^2 \][/tex]
[tex]\[ v_i = \sqrt{8.99 \times 10^{12} \, \text{m}^2/\text{s}^2} \approx 3.00 \times 10^6 \, \text{m/s} \][/tex]
2. The direction of the initial speed is in the positive [tex]\(x\)[/tex]-direction.
Therefore, the initial speed of the proton is:
- Magnitude: [tex]\( 3.00 \times 10^6 \, \text{m/s} \)[/tex]
- Direction: Positive [tex]\(x\)[/tex]-direction
#### (c) Determine the time interval over which the proton comes to rest.
1. Use the kinematic equation [tex]\( v_f = v_i + at \)[/tex]. Since [tex]\( v_f = 0 \)[/tex]:
[tex]\[ 0 = 3.00 \times 10^6 \, \text{m/s} + (-6.52 \times 10^{13} \, \text{m/s}^2)t \][/tex]
Solving for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{3.00 \times 10^6 \, \text{m/s}}{6.52 \times 10^{13} \, \text{m/s}^2} \approx 4.60 \times 10^{-8} \, \text{s} \][/tex]
Therefore, the time interval over which the proton comes to rest is:
- [tex]\( 4.60 \times 10^{-8} \, \text{s} \)[/tex]
To summarize, the answers are:
- (a) Acceleration: [tex]\( 6.52 \times 10^{13} \, \text{m/s}^2 \)[/tex], Direction: Negative [tex]\(x\)[/tex]-direction
- (b) Initial speed: [tex]\( 3.00 \times 10^6 \, \text{m/s} \)[/tex], Direction: Positive [tex]\(x\)[/tex]-direction
- (c) Time interval: [tex]\( 4.60 \times 10^{-8} \, \text{s} \)[/tex]
### Given:
1. Electric field, [tex]\(\overrightarrow{E} = -6.80 \times 10^5 \, \text{N/C}\)[/tex] in the [tex]\(x\)[/tex]-direction.
2. Distance traveled by the proton before coming to rest, [tex]\( d = 6.90 \,\text{cm} = 0.069 \,\text{m} \)[/tex].
3. Proton charge, [tex]\( q = 1.60 \times 10^{-19} \, \text{C} \)[/tex].
4. Proton mass, [tex]\( m = 1.67 \times 10^{-27} \, \text{kg} \)[/tex].
### Step-by-step solution:
#### (a) Determine the acceleration of the proton.
1. Find the force on the proton due to the electric field:
[tex]\[ F = qE \][/tex]
Substituting the values:
[tex]\[ F = (1.60 \times 10^{-19} \, \text{C}) \times (-6.80 \times 10^5 \, \text{N/C}) = -1.088 \times 10^{-13} \, \text{N} \][/tex]
2. Use Newton's second law to find the acceleration ([tex]\( a \)[/tex]) of the proton:
[tex]\[ F = ma \][/tex]
[tex]\[ a = \frac{F}{m} = \frac{-1.088 \times 10^{-13} \, \text{N}}{1.67 \times 10^{-27} \, \text{kg}} \approx -6.52 \times 10^{13} \, \text{m/s}^2 \][/tex]
3. The magnitude of the acceleration is:
[tex]\[ 6.52 \times 10^{13} \, \text{m/s}^2 \][/tex]
4. The direction of the acceleration is in the negative [tex]\(x\)[/tex]-direction (opposite to the direction of the electric field).
Therefore, the acceleration of the proton is:
- Magnitude: [tex]\( 6.52 \times 10^{13} \, \text{m/s}^2 \)[/tex]
- Direction: Negative [tex]\(x\)[/tex]-direction
#### (b) Determine the initial speed of the proton.
1. Use the kinematic equation:
[tex]\[ v_f^2 = v_i^2 + 2ad \][/tex]
Since the proton comes to rest, [tex]\( v_f = 0 \)[/tex]. Therefore:
[tex]\[ 0 = v_i^2 + 2(-6.52 \times 10^{13} \, \text{m/s}^2)(0.069 \, \text{m}) \][/tex]
Solving for [tex]\( v_i \)[/tex]:
[tex]\[ v_i^2 = -2 \cdot (-6.52 \times 10^{13} \, \text{m/s}^2) \cdot 0.069 \, \text{m} \][/tex]
[tex]\[ v_i^2 = 8.99 \times 10^{12} \, \text{m}^2/\text{s}^2 \][/tex]
[tex]\[ v_i = \sqrt{8.99 \times 10^{12} \, \text{m}^2/\text{s}^2} \approx 3.00 \times 10^6 \, \text{m/s} \][/tex]
2. The direction of the initial speed is in the positive [tex]\(x\)[/tex]-direction.
Therefore, the initial speed of the proton is:
- Magnitude: [tex]\( 3.00 \times 10^6 \, \text{m/s} \)[/tex]
- Direction: Positive [tex]\(x\)[/tex]-direction
#### (c) Determine the time interval over which the proton comes to rest.
1. Use the kinematic equation [tex]\( v_f = v_i + at \)[/tex]. Since [tex]\( v_f = 0 \)[/tex]:
[tex]\[ 0 = 3.00 \times 10^6 \, \text{m/s} + (-6.52 \times 10^{13} \, \text{m/s}^2)t \][/tex]
Solving for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{3.00 \times 10^6 \, \text{m/s}}{6.52 \times 10^{13} \, \text{m/s}^2} \approx 4.60 \times 10^{-8} \, \text{s} \][/tex]
Therefore, the time interval over which the proton comes to rest is:
- [tex]\( 4.60 \times 10^{-8} \, \text{s} \)[/tex]
To summarize, the answers are:
- (a) Acceleration: [tex]\( 6.52 \times 10^{13} \, \text{m/s}^2 \)[/tex], Direction: Negative [tex]\(x\)[/tex]-direction
- (b) Initial speed: [tex]\( 3.00 \times 10^6 \, \text{m/s} \)[/tex], Direction: Positive [tex]\(x\)[/tex]-direction
- (c) Time interval: [tex]\( 4.60 \times 10^{-8} \, \text{s} \)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.