Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's break down the problem step-by-step:
### Given:
1. Electric field, [tex]\(\overrightarrow{E} = -6.80 \times 10^5 \, \text{N/C}\)[/tex] in the [tex]\(x\)[/tex]-direction.
2. Distance traveled by the proton before coming to rest, [tex]\( d = 6.90 \,\text{cm} = 0.069 \,\text{m} \)[/tex].
3. Proton charge, [tex]\( q = 1.60 \times 10^{-19} \, \text{C} \)[/tex].
4. Proton mass, [tex]\( m = 1.67 \times 10^{-27} \, \text{kg} \)[/tex].
### Step-by-step solution:
#### (a) Determine the acceleration of the proton.
1. Find the force on the proton due to the electric field:
[tex]\[ F = qE \][/tex]
Substituting the values:
[tex]\[ F = (1.60 \times 10^{-19} \, \text{C}) \times (-6.80 \times 10^5 \, \text{N/C}) = -1.088 \times 10^{-13} \, \text{N} \][/tex]
2. Use Newton's second law to find the acceleration ([tex]\( a \)[/tex]) of the proton:
[tex]\[ F = ma \][/tex]
[tex]\[ a = \frac{F}{m} = \frac{-1.088 \times 10^{-13} \, \text{N}}{1.67 \times 10^{-27} \, \text{kg}} \approx -6.52 \times 10^{13} \, \text{m/s}^2 \][/tex]
3. The magnitude of the acceleration is:
[tex]\[ 6.52 \times 10^{13} \, \text{m/s}^2 \][/tex]
4. The direction of the acceleration is in the negative [tex]\(x\)[/tex]-direction (opposite to the direction of the electric field).
Therefore, the acceleration of the proton is:
- Magnitude: [tex]\( 6.52 \times 10^{13} \, \text{m/s}^2 \)[/tex]
- Direction: Negative [tex]\(x\)[/tex]-direction
#### (b) Determine the initial speed of the proton.
1. Use the kinematic equation:
[tex]\[ v_f^2 = v_i^2 + 2ad \][/tex]
Since the proton comes to rest, [tex]\( v_f = 0 \)[/tex]. Therefore:
[tex]\[ 0 = v_i^2 + 2(-6.52 \times 10^{13} \, \text{m/s}^2)(0.069 \, \text{m}) \][/tex]
Solving for [tex]\( v_i \)[/tex]:
[tex]\[ v_i^2 = -2 \cdot (-6.52 \times 10^{13} \, \text{m/s}^2) \cdot 0.069 \, \text{m} \][/tex]
[tex]\[ v_i^2 = 8.99 \times 10^{12} \, \text{m}^2/\text{s}^2 \][/tex]
[tex]\[ v_i = \sqrt{8.99 \times 10^{12} \, \text{m}^2/\text{s}^2} \approx 3.00 \times 10^6 \, \text{m/s} \][/tex]
2. The direction of the initial speed is in the positive [tex]\(x\)[/tex]-direction.
Therefore, the initial speed of the proton is:
- Magnitude: [tex]\( 3.00 \times 10^6 \, \text{m/s} \)[/tex]
- Direction: Positive [tex]\(x\)[/tex]-direction
#### (c) Determine the time interval over which the proton comes to rest.
1. Use the kinematic equation [tex]\( v_f = v_i + at \)[/tex]. Since [tex]\( v_f = 0 \)[/tex]:
[tex]\[ 0 = 3.00 \times 10^6 \, \text{m/s} + (-6.52 \times 10^{13} \, \text{m/s}^2)t \][/tex]
Solving for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{3.00 \times 10^6 \, \text{m/s}}{6.52 \times 10^{13} \, \text{m/s}^2} \approx 4.60 \times 10^{-8} \, \text{s} \][/tex]
Therefore, the time interval over which the proton comes to rest is:
- [tex]\( 4.60 \times 10^{-8} \, \text{s} \)[/tex]
To summarize, the answers are:
- (a) Acceleration: [tex]\( 6.52 \times 10^{13} \, \text{m/s}^2 \)[/tex], Direction: Negative [tex]\(x\)[/tex]-direction
- (b) Initial speed: [tex]\( 3.00 \times 10^6 \, \text{m/s} \)[/tex], Direction: Positive [tex]\(x\)[/tex]-direction
- (c) Time interval: [tex]\( 4.60 \times 10^{-8} \, \text{s} \)[/tex]
### Given:
1. Electric field, [tex]\(\overrightarrow{E} = -6.80 \times 10^5 \, \text{N/C}\)[/tex] in the [tex]\(x\)[/tex]-direction.
2. Distance traveled by the proton before coming to rest, [tex]\( d = 6.90 \,\text{cm} = 0.069 \,\text{m} \)[/tex].
3. Proton charge, [tex]\( q = 1.60 \times 10^{-19} \, \text{C} \)[/tex].
4. Proton mass, [tex]\( m = 1.67 \times 10^{-27} \, \text{kg} \)[/tex].
### Step-by-step solution:
#### (a) Determine the acceleration of the proton.
1. Find the force on the proton due to the electric field:
[tex]\[ F = qE \][/tex]
Substituting the values:
[tex]\[ F = (1.60 \times 10^{-19} \, \text{C}) \times (-6.80 \times 10^5 \, \text{N/C}) = -1.088 \times 10^{-13} \, \text{N} \][/tex]
2. Use Newton's second law to find the acceleration ([tex]\( a \)[/tex]) of the proton:
[tex]\[ F = ma \][/tex]
[tex]\[ a = \frac{F}{m} = \frac{-1.088 \times 10^{-13} \, \text{N}}{1.67 \times 10^{-27} \, \text{kg}} \approx -6.52 \times 10^{13} \, \text{m/s}^2 \][/tex]
3. The magnitude of the acceleration is:
[tex]\[ 6.52 \times 10^{13} \, \text{m/s}^2 \][/tex]
4. The direction of the acceleration is in the negative [tex]\(x\)[/tex]-direction (opposite to the direction of the electric field).
Therefore, the acceleration of the proton is:
- Magnitude: [tex]\( 6.52 \times 10^{13} \, \text{m/s}^2 \)[/tex]
- Direction: Negative [tex]\(x\)[/tex]-direction
#### (b) Determine the initial speed of the proton.
1. Use the kinematic equation:
[tex]\[ v_f^2 = v_i^2 + 2ad \][/tex]
Since the proton comes to rest, [tex]\( v_f = 0 \)[/tex]. Therefore:
[tex]\[ 0 = v_i^2 + 2(-6.52 \times 10^{13} \, \text{m/s}^2)(0.069 \, \text{m}) \][/tex]
Solving for [tex]\( v_i \)[/tex]:
[tex]\[ v_i^2 = -2 \cdot (-6.52 \times 10^{13} \, \text{m/s}^2) \cdot 0.069 \, \text{m} \][/tex]
[tex]\[ v_i^2 = 8.99 \times 10^{12} \, \text{m}^2/\text{s}^2 \][/tex]
[tex]\[ v_i = \sqrt{8.99 \times 10^{12} \, \text{m}^2/\text{s}^2} \approx 3.00 \times 10^6 \, \text{m/s} \][/tex]
2. The direction of the initial speed is in the positive [tex]\(x\)[/tex]-direction.
Therefore, the initial speed of the proton is:
- Magnitude: [tex]\( 3.00 \times 10^6 \, \text{m/s} \)[/tex]
- Direction: Positive [tex]\(x\)[/tex]-direction
#### (c) Determine the time interval over which the proton comes to rest.
1. Use the kinematic equation [tex]\( v_f = v_i + at \)[/tex]. Since [tex]\( v_f = 0 \)[/tex]:
[tex]\[ 0 = 3.00 \times 10^6 \, \text{m/s} + (-6.52 \times 10^{13} \, \text{m/s}^2)t \][/tex]
Solving for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{3.00 \times 10^6 \, \text{m/s}}{6.52 \times 10^{13} \, \text{m/s}^2} \approx 4.60 \times 10^{-8} \, \text{s} \][/tex]
Therefore, the time interval over which the proton comes to rest is:
- [tex]\( 4.60 \times 10^{-8} \, \text{s} \)[/tex]
To summarize, the answers are:
- (a) Acceleration: [tex]\( 6.52 \times 10^{13} \, \text{m/s}^2 \)[/tex], Direction: Negative [tex]\(x\)[/tex]-direction
- (b) Initial speed: [tex]\( 3.00 \times 10^6 \, \text{m/s} \)[/tex], Direction: Positive [tex]\(x\)[/tex]-direction
- (c) Time interval: [tex]\( 4.60 \times 10^{-8} \, \text{s} \)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.