Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's break down the problem step-by-step:
### Given:
1. Electric field, [tex]\(\overrightarrow{E} = -6.80 \times 10^5 \, \text{N/C}\)[/tex] in the [tex]\(x\)[/tex]-direction.
2. Distance traveled by the proton before coming to rest, [tex]\( d = 6.90 \,\text{cm} = 0.069 \,\text{m} \)[/tex].
3. Proton charge, [tex]\( q = 1.60 \times 10^{-19} \, \text{C} \)[/tex].
4. Proton mass, [tex]\( m = 1.67 \times 10^{-27} \, \text{kg} \)[/tex].
### Step-by-step solution:
#### (a) Determine the acceleration of the proton.
1. Find the force on the proton due to the electric field:
[tex]\[ F = qE \][/tex]
Substituting the values:
[tex]\[ F = (1.60 \times 10^{-19} \, \text{C}) \times (-6.80 \times 10^5 \, \text{N/C}) = -1.088 \times 10^{-13} \, \text{N} \][/tex]
2. Use Newton's second law to find the acceleration ([tex]\( a \)[/tex]) of the proton:
[tex]\[ F = ma \][/tex]
[tex]\[ a = \frac{F}{m} = \frac{-1.088 \times 10^{-13} \, \text{N}}{1.67 \times 10^{-27} \, \text{kg}} \approx -6.52 \times 10^{13} \, \text{m/s}^2 \][/tex]
3. The magnitude of the acceleration is:
[tex]\[ 6.52 \times 10^{13} \, \text{m/s}^2 \][/tex]
4. The direction of the acceleration is in the negative [tex]\(x\)[/tex]-direction (opposite to the direction of the electric field).
Therefore, the acceleration of the proton is:
- Magnitude: [tex]\( 6.52 \times 10^{13} \, \text{m/s}^2 \)[/tex]
- Direction: Negative [tex]\(x\)[/tex]-direction
#### (b) Determine the initial speed of the proton.
1. Use the kinematic equation:
[tex]\[ v_f^2 = v_i^2 + 2ad \][/tex]
Since the proton comes to rest, [tex]\( v_f = 0 \)[/tex]. Therefore:
[tex]\[ 0 = v_i^2 + 2(-6.52 \times 10^{13} \, \text{m/s}^2)(0.069 \, \text{m}) \][/tex]
Solving for [tex]\( v_i \)[/tex]:
[tex]\[ v_i^2 = -2 \cdot (-6.52 \times 10^{13} \, \text{m/s}^2) \cdot 0.069 \, \text{m} \][/tex]
[tex]\[ v_i^2 = 8.99 \times 10^{12} \, \text{m}^2/\text{s}^2 \][/tex]
[tex]\[ v_i = \sqrt{8.99 \times 10^{12} \, \text{m}^2/\text{s}^2} \approx 3.00 \times 10^6 \, \text{m/s} \][/tex]
2. The direction of the initial speed is in the positive [tex]\(x\)[/tex]-direction.
Therefore, the initial speed of the proton is:
- Magnitude: [tex]\( 3.00 \times 10^6 \, \text{m/s} \)[/tex]
- Direction: Positive [tex]\(x\)[/tex]-direction
#### (c) Determine the time interval over which the proton comes to rest.
1. Use the kinematic equation [tex]\( v_f = v_i + at \)[/tex]. Since [tex]\( v_f = 0 \)[/tex]:
[tex]\[ 0 = 3.00 \times 10^6 \, \text{m/s} + (-6.52 \times 10^{13} \, \text{m/s}^2)t \][/tex]
Solving for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{3.00 \times 10^6 \, \text{m/s}}{6.52 \times 10^{13} \, \text{m/s}^2} \approx 4.60 \times 10^{-8} \, \text{s} \][/tex]
Therefore, the time interval over which the proton comes to rest is:
- [tex]\( 4.60 \times 10^{-8} \, \text{s} \)[/tex]
To summarize, the answers are:
- (a) Acceleration: [tex]\( 6.52 \times 10^{13} \, \text{m/s}^2 \)[/tex], Direction: Negative [tex]\(x\)[/tex]-direction
- (b) Initial speed: [tex]\( 3.00 \times 10^6 \, \text{m/s} \)[/tex], Direction: Positive [tex]\(x\)[/tex]-direction
- (c) Time interval: [tex]\( 4.60 \times 10^{-8} \, \text{s} \)[/tex]
### Given:
1. Electric field, [tex]\(\overrightarrow{E} = -6.80 \times 10^5 \, \text{N/C}\)[/tex] in the [tex]\(x\)[/tex]-direction.
2. Distance traveled by the proton before coming to rest, [tex]\( d = 6.90 \,\text{cm} = 0.069 \,\text{m} \)[/tex].
3. Proton charge, [tex]\( q = 1.60 \times 10^{-19} \, \text{C} \)[/tex].
4. Proton mass, [tex]\( m = 1.67 \times 10^{-27} \, \text{kg} \)[/tex].
### Step-by-step solution:
#### (a) Determine the acceleration of the proton.
1. Find the force on the proton due to the electric field:
[tex]\[ F = qE \][/tex]
Substituting the values:
[tex]\[ F = (1.60 \times 10^{-19} \, \text{C}) \times (-6.80 \times 10^5 \, \text{N/C}) = -1.088 \times 10^{-13} \, \text{N} \][/tex]
2. Use Newton's second law to find the acceleration ([tex]\( a \)[/tex]) of the proton:
[tex]\[ F = ma \][/tex]
[tex]\[ a = \frac{F}{m} = \frac{-1.088 \times 10^{-13} \, \text{N}}{1.67 \times 10^{-27} \, \text{kg}} \approx -6.52 \times 10^{13} \, \text{m/s}^2 \][/tex]
3. The magnitude of the acceleration is:
[tex]\[ 6.52 \times 10^{13} \, \text{m/s}^2 \][/tex]
4. The direction of the acceleration is in the negative [tex]\(x\)[/tex]-direction (opposite to the direction of the electric field).
Therefore, the acceleration of the proton is:
- Magnitude: [tex]\( 6.52 \times 10^{13} \, \text{m/s}^2 \)[/tex]
- Direction: Negative [tex]\(x\)[/tex]-direction
#### (b) Determine the initial speed of the proton.
1. Use the kinematic equation:
[tex]\[ v_f^2 = v_i^2 + 2ad \][/tex]
Since the proton comes to rest, [tex]\( v_f = 0 \)[/tex]. Therefore:
[tex]\[ 0 = v_i^2 + 2(-6.52 \times 10^{13} \, \text{m/s}^2)(0.069 \, \text{m}) \][/tex]
Solving for [tex]\( v_i \)[/tex]:
[tex]\[ v_i^2 = -2 \cdot (-6.52 \times 10^{13} \, \text{m/s}^2) \cdot 0.069 \, \text{m} \][/tex]
[tex]\[ v_i^2 = 8.99 \times 10^{12} \, \text{m}^2/\text{s}^2 \][/tex]
[tex]\[ v_i = \sqrt{8.99 \times 10^{12} \, \text{m}^2/\text{s}^2} \approx 3.00 \times 10^6 \, \text{m/s} \][/tex]
2. The direction of the initial speed is in the positive [tex]\(x\)[/tex]-direction.
Therefore, the initial speed of the proton is:
- Magnitude: [tex]\( 3.00 \times 10^6 \, \text{m/s} \)[/tex]
- Direction: Positive [tex]\(x\)[/tex]-direction
#### (c) Determine the time interval over which the proton comes to rest.
1. Use the kinematic equation [tex]\( v_f = v_i + at \)[/tex]. Since [tex]\( v_f = 0 \)[/tex]:
[tex]\[ 0 = 3.00 \times 10^6 \, \text{m/s} + (-6.52 \times 10^{13} \, \text{m/s}^2)t \][/tex]
Solving for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{3.00 \times 10^6 \, \text{m/s}}{6.52 \times 10^{13} \, \text{m/s}^2} \approx 4.60 \times 10^{-8} \, \text{s} \][/tex]
Therefore, the time interval over which the proton comes to rest is:
- [tex]\( 4.60 \times 10^{-8} \, \text{s} \)[/tex]
To summarize, the answers are:
- (a) Acceleration: [tex]\( 6.52 \times 10^{13} \, \text{m/s}^2 \)[/tex], Direction: Negative [tex]\(x\)[/tex]-direction
- (b) Initial speed: [tex]\( 3.00 \times 10^6 \, \text{m/s} \)[/tex], Direction: Positive [tex]\(x\)[/tex]-direction
- (c) Time interval: [tex]\( 4.60 \times 10^{-8} \, \text{s} \)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.