Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's solve the given problem step by step.
### Problem Restatement
We have a line given by the equation [tex]\(\frac{x}{a} + \frac{y}{b} = 1\)[/tex], which intersects the [tex]\(x\)[/tex]-axis at point [tex]\(P\)[/tex] and the [tex]\(y\)[/tex]-axis at point [tex]\(Q\)[/tex]. The distances [tex]\(PQ\)[/tex] is [tex]\(\sqrt{45}\)[/tex], and the gradient of the line [tex]\(PQ\)[/tex] is [tex]\(-\frac{1}{2}\)[/tex]. We need to find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex].
### Step-by-Step Solution
1. Determine the coordinates of [tex]\(P\)[/tex] and [tex]\(Q\)[/tex]:
- The line meets the [tex]\(x\)[/tex]-axis at [tex]\(P\)[/tex], so set [tex]\(y = 0\)[/tex] in the equation: [tex]\(\frac{x}{a} + \frac{0}{b} = 1 \implies x = a\)[/tex]. Hence, [tex]\(P = (a, 0)\)[/tex].
- The line meets the [tex]\(y\)[/tex]-axis at [tex]\(Q\)[/tex], so set [tex]\(x = 0\)[/tex] in the equation: [tex]\(\frac{0}{a} + \frac{y}{b} = 1 \implies y = b\)[/tex]. Hence, [tex]\(Q = (0, b)\)[/tex].
2. Calculate the distance [tex]\(PQ\)[/tex]:
The distance between [tex]\(P (a, 0)\)[/tex] and [tex]\(Q (0, b)\)[/tex] is given by the distance formula:
[tex]\[ PQ = \sqrt{(a - 0)^2 + (0 - b)^2} = \sqrt{a^2 + b^2} \][/tex]
Given that [tex]\(PQ = \sqrt{45}\)[/tex], we have:
[tex]\[ \sqrt{a^2 + b^2} = \sqrt{45} \][/tex]
Squaring both sides, we get:
[tex]\[ a^2 + b^2 = 45 \][/tex]
3. Determine the gradient of the line [tex]\(PQ\)[/tex]:
The gradient (or slope) of the line passing through [tex]\(P (a, 0)\)[/tex] and [tex]\(Q (0, b)\)[/tex] is:
[tex]\[ \text{Gradient} = \frac{b - 0}{0 - a} = \frac{b}{-a} = -\frac{b}{a} \][/tex]
Given that the gradient is [tex]\(-\frac{1}{2}\)[/tex], we have:
[tex]\[ -\frac{b}{a} = -\frac{1}{2} \][/tex]
Removing the negative signs, this simplifies to:
[tex]\[ \frac{b}{a} = \frac{1}{2} \][/tex]
Solving for [tex]\(b\)[/tex], we get:
[tex]\[ b = \frac{a}{2} \][/tex]
4. Solve the System of Equations:
Now we have two equations:
[tex]\[ a^2 + b^2 = 45 \][/tex]
[tex]\[ b = \frac{a}{2} \][/tex]
Substitute [tex]\(b = \frac{a}{2}\)[/tex] into the first equation:
[tex]\[ a^2 + \left(\frac{a}{2}\right)^2 = 45 \][/tex]
Simplify inside the parentheses:
[tex]\[ a^2 + \frac{a^2}{4} = 45 \][/tex]
Multiply through by 4 to clear the fraction:
[tex]\[ 4a^2 + a^2 = 180 \][/tex]
Combine like terms:
[tex]\[ 5a^2 = 180 \][/tex]
Solve for [tex]\(a^2\)[/tex]:
[tex]\[ a^2 = 36 \][/tex]
Taking the positive square root (since [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are positive):
[tex]\[ a = 6 \][/tex]
Substitute [tex]\(a = 6\)[/tex] back into [tex]\(b = \frac{a}{2}\)[/tex]:
[tex]\[ b = \frac{6}{2} = 3 \][/tex]
### Conclusion
The values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:
[tex]\[ a = 6 \quad \text{and} \quad b = 3 \][/tex]
### Problem Restatement
We have a line given by the equation [tex]\(\frac{x}{a} + \frac{y}{b} = 1\)[/tex], which intersects the [tex]\(x\)[/tex]-axis at point [tex]\(P\)[/tex] and the [tex]\(y\)[/tex]-axis at point [tex]\(Q\)[/tex]. The distances [tex]\(PQ\)[/tex] is [tex]\(\sqrt{45}\)[/tex], and the gradient of the line [tex]\(PQ\)[/tex] is [tex]\(-\frac{1}{2}\)[/tex]. We need to find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex].
### Step-by-Step Solution
1. Determine the coordinates of [tex]\(P\)[/tex] and [tex]\(Q\)[/tex]:
- The line meets the [tex]\(x\)[/tex]-axis at [tex]\(P\)[/tex], so set [tex]\(y = 0\)[/tex] in the equation: [tex]\(\frac{x}{a} + \frac{0}{b} = 1 \implies x = a\)[/tex]. Hence, [tex]\(P = (a, 0)\)[/tex].
- The line meets the [tex]\(y\)[/tex]-axis at [tex]\(Q\)[/tex], so set [tex]\(x = 0\)[/tex] in the equation: [tex]\(\frac{0}{a} + \frac{y}{b} = 1 \implies y = b\)[/tex]. Hence, [tex]\(Q = (0, b)\)[/tex].
2. Calculate the distance [tex]\(PQ\)[/tex]:
The distance between [tex]\(P (a, 0)\)[/tex] and [tex]\(Q (0, b)\)[/tex] is given by the distance formula:
[tex]\[ PQ = \sqrt{(a - 0)^2 + (0 - b)^2} = \sqrt{a^2 + b^2} \][/tex]
Given that [tex]\(PQ = \sqrt{45}\)[/tex], we have:
[tex]\[ \sqrt{a^2 + b^2} = \sqrt{45} \][/tex]
Squaring both sides, we get:
[tex]\[ a^2 + b^2 = 45 \][/tex]
3. Determine the gradient of the line [tex]\(PQ\)[/tex]:
The gradient (or slope) of the line passing through [tex]\(P (a, 0)\)[/tex] and [tex]\(Q (0, b)\)[/tex] is:
[tex]\[ \text{Gradient} = \frac{b - 0}{0 - a} = \frac{b}{-a} = -\frac{b}{a} \][/tex]
Given that the gradient is [tex]\(-\frac{1}{2}\)[/tex], we have:
[tex]\[ -\frac{b}{a} = -\frac{1}{2} \][/tex]
Removing the negative signs, this simplifies to:
[tex]\[ \frac{b}{a} = \frac{1}{2} \][/tex]
Solving for [tex]\(b\)[/tex], we get:
[tex]\[ b = \frac{a}{2} \][/tex]
4. Solve the System of Equations:
Now we have two equations:
[tex]\[ a^2 + b^2 = 45 \][/tex]
[tex]\[ b = \frac{a}{2} \][/tex]
Substitute [tex]\(b = \frac{a}{2}\)[/tex] into the first equation:
[tex]\[ a^2 + \left(\frac{a}{2}\right)^2 = 45 \][/tex]
Simplify inside the parentheses:
[tex]\[ a^2 + \frac{a^2}{4} = 45 \][/tex]
Multiply through by 4 to clear the fraction:
[tex]\[ 4a^2 + a^2 = 180 \][/tex]
Combine like terms:
[tex]\[ 5a^2 = 180 \][/tex]
Solve for [tex]\(a^2\)[/tex]:
[tex]\[ a^2 = 36 \][/tex]
Taking the positive square root (since [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are positive):
[tex]\[ a = 6 \][/tex]
Substitute [tex]\(a = 6\)[/tex] back into [tex]\(b = \frac{a}{2}\)[/tex]:
[tex]\[ b = \frac{6}{2} = 3 \][/tex]
### Conclusion
The values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:
[tex]\[ a = 6 \quad \text{and} \quad b = 3 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.