Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's solve the given problem step by step.
### Problem Restatement
We have a line given by the equation [tex]\(\frac{x}{a} + \frac{y}{b} = 1\)[/tex], which intersects the [tex]\(x\)[/tex]-axis at point [tex]\(P\)[/tex] and the [tex]\(y\)[/tex]-axis at point [tex]\(Q\)[/tex]. The distances [tex]\(PQ\)[/tex] is [tex]\(\sqrt{45}\)[/tex], and the gradient of the line [tex]\(PQ\)[/tex] is [tex]\(-\frac{1}{2}\)[/tex]. We need to find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex].
### Step-by-Step Solution
1. Determine the coordinates of [tex]\(P\)[/tex] and [tex]\(Q\)[/tex]:
- The line meets the [tex]\(x\)[/tex]-axis at [tex]\(P\)[/tex], so set [tex]\(y = 0\)[/tex] in the equation: [tex]\(\frac{x}{a} + \frac{0}{b} = 1 \implies x = a\)[/tex]. Hence, [tex]\(P = (a, 0)\)[/tex].
- The line meets the [tex]\(y\)[/tex]-axis at [tex]\(Q\)[/tex], so set [tex]\(x = 0\)[/tex] in the equation: [tex]\(\frac{0}{a} + \frac{y}{b} = 1 \implies y = b\)[/tex]. Hence, [tex]\(Q = (0, b)\)[/tex].
2. Calculate the distance [tex]\(PQ\)[/tex]:
The distance between [tex]\(P (a, 0)\)[/tex] and [tex]\(Q (0, b)\)[/tex] is given by the distance formula:
[tex]\[ PQ = \sqrt{(a - 0)^2 + (0 - b)^2} = \sqrt{a^2 + b^2} \][/tex]
Given that [tex]\(PQ = \sqrt{45}\)[/tex], we have:
[tex]\[ \sqrt{a^2 + b^2} = \sqrt{45} \][/tex]
Squaring both sides, we get:
[tex]\[ a^2 + b^2 = 45 \][/tex]
3. Determine the gradient of the line [tex]\(PQ\)[/tex]:
The gradient (or slope) of the line passing through [tex]\(P (a, 0)\)[/tex] and [tex]\(Q (0, b)\)[/tex] is:
[tex]\[ \text{Gradient} = \frac{b - 0}{0 - a} = \frac{b}{-a} = -\frac{b}{a} \][/tex]
Given that the gradient is [tex]\(-\frac{1}{2}\)[/tex], we have:
[tex]\[ -\frac{b}{a} = -\frac{1}{2} \][/tex]
Removing the negative signs, this simplifies to:
[tex]\[ \frac{b}{a} = \frac{1}{2} \][/tex]
Solving for [tex]\(b\)[/tex], we get:
[tex]\[ b = \frac{a}{2} \][/tex]
4. Solve the System of Equations:
Now we have two equations:
[tex]\[ a^2 + b^2 = 45 \][/tex]
[tex]\[ b = \frac{a}{2} \][/tex]
Substitute [tex]\(b = \frac{a}{2}\)[/tex] into the first equation:
[tex]\[ a^2 + \left(\frac{a}{2}\right)^2 = 45 \][/tex]
Simplify inside the parentheses:
[tex]\[ a^2 + \frac{a^2}{4} = 45 \][/tex]
Multiply through by 4 to clear the fraction:
[tex]\[ 4a^2 + a^2 = 180 \][/tex]
Combine like terms:
[tex]\[ 5a^2 = 180 \][/tex]
Solve for [tex]\(a^2\)[/tex]:
[tex]\[ a^2 = 36 \][/tex]
Taking the positive square root (since [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are positive):
[tex]\[ a = 6 \][/tex]
Substitute [tex]\(a = 6\)[/tex] back into [tex]\(b = \frac{a}{2}\)[/tex]:
[tex]\[ b = \frac{6}{2} = 3 \][/tex]
### Conclusion
The values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:
[tex]\[ a = 6 \quad \text{and} \quad b = 3 \][/tex]
### Problem Restatement
We have a line given by the equation [tex]\(\frac{x}{a} + \frac{y}{b} = 1\)[/tex], which intersects the [tex]\(x\)[/tex]-axis at point [tex]\(P\)[/tex] and the [tex]\(y\)[/tex]-axis at point [tex]\(Q\)[/tex]. The distances [tex]\(PQ\)[/tex] is [tex]\(\sqrt{45}\)[/tex], and the gradient of the line [tex]\(PQ\)[/tex] is [tex]\(-\frac{1}{2}\)[/tex]. We need to find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex].
### Step-by-Step Solution
1. Determine the coordinates of [tex]\(P\)[/tex] and [tex]\(Q\)[/tex]:
- The line meets the [tex]\(x\)[/tex]-axis at [tex]\(P\)[/tex], so set [tex]\(y = 0\)[/tex] in the equation: [tex]\(\frac{x}{a} + \frac{0}{b} = 1 \implies x = a\)[/tex]. Hence, [tex]\(P = (a, 0)\)[/tex].
- The line meets the [tex]\(y\)[/tex]-axis at [tex]\(Q\)[/tex], so set [tex]\(x = 0\)[/tex] in the equation: [tex]\(\frac{0}{a} + \frac{y}{b} = 1 \implies y = b\)[/tex]. Hence, [tex]\(Q = (0, b)\)[/tex].
2. Calculate the distance [tex]\(PQ\)[/tex]:
The distance between [tex]\(P (a, 0)\)[/tex] and [tex]\(Q (0, b)\)[/tex] is given by the distance formula:
[tex]\[ PQ = \sqrt{(a - 0)^2 + (0 - b)^2} = \sqrt{a^2 + b^2} \][/tex]
Given that [tex]\(PQ = \sqrt{45}\)[/tex], we have:
[tex]\[ \sqrt{a^2 + b^2} = \sqrt{45} \][/tex]
Squaring both sides, we get:
[tex]\[ a^2 + b^2 = 45 \][/tex]
3. Determine the gradient of the line [tex]\(PQ\)[/tex]:
The gradient (or slope) of the line passing through [tex]\(P (a, 0)\)[/tex] and [tex]\(Q (0, b)\)[/tex] is:
[tex]\[ \text{Gradient} = \frac{b - 0}{0 - a} = \frac{b}{-a} = -\frac{b}{a} \][/tex]
Given that the gradient is [tex]\(-\frac{1}{2}\)[/tex], we have:
[tex]\[ -\frac{b}{a} = -\frac{1}{2} \][/tex]
Removing the negative signs, this simplifies to:
[tex]\[ \frac{b}{a} = \frac{1}{2} \][/tex]
Solving for [tex]\(b\)[/tex], we get:
[tex]\[ b = \frac{a}{2} \][/tex]
4. Solve the System of Equations:
Now we have two equations:
[tex]\[ a^2 + b^2 = 45 \][/tex]
[tex]\[ b = \frac{a}{2} \][/tex]
Substitute [tex]\(b = \frac{a}{2}\)[/tex] into the first equation:
[tex]\[ a^2 + \left(\frac{a}{2}\right)^2 = 45 \][/tex]
Simplify inside the parentheses:
[tex]\[ a^2 + \frac{a^2}{4} = 45 \][/tex]
Multiply through by 4 to clear the fraction:
[tex]\[ 4a^2 + a^2 = 180 \][/tex]
Combine like terms:
[tex]\[ 5a^2 = 180 \][/tex]
Solve for [tex]\(a^2\)[/tex]:
[tex]\[ a^2 = 36 \][/tex]
Taking the positive square root (since [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are positive):
[tex]\[ a = 6 \][/tex]
Substitute [tex]\(a = 6\)[/tex] back into [tex]\(b = \frac{a}{2}\)[/tex]:
[tex]\[ b = \frac{6}{2} = 3 \][/tex]
### Conclusion
The values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:
[tex]\[ a = 6 \quad \text{and} \quad b = 3 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.