Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let’s solve this step-by-step.
Given:
- The rate constant [tex]\( k_{800K} \)[/tex] at 800 K is [tex]\( 3.241 \times 10^{-5} \, \text{s}^{-1} \)[/tex].
- The activation energy [tex]\( E_a \)[/tex] is [tex]\( 245 \, \text{kJ/mol} \)[/tex].
- We need to find the rate constant [tex]\( k_{990K} \)[/tex] at 990 K (which is [tex]\( 9.90 \times 10^2 \, \text{K} \)[/tex]).
- The universal gas constant [tex]\( R \)[/tex] is [tex]\( 8.314 \, \text{J/mol·K} \)[/tex] (Note: the activation energy needs to be in the same units as [tex]\( R \)[/tex], so convert [tex]\( E_a \)[/tex] from kJ to J).
1. Convert Activation Energy:
[tex]\[ E_a = 245 \, \text{kJ/mol} = 245 \times 10^3 \, \text{J/mol} = 245000 \, \text{J/mol} \][/tex]
2. Write the Arrhenius Equation:
The Arrhenius equation for the temperature dependence of the rate constant is:
[tex]\[ k_2 = k_1 \exp \left[ \frac{E_a}{R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right) \right] \][/tex]
Where:
- [tex]\( k_1 \)[/tex] and [tex]\( k_2 \)[/tex] are the rate constants at temperatures [tex]\( T_1 \)[/tex] and [tex]\( T_2 \)[/tex] respectively.
- [tex]\( T_1 = 800 \, \text{K} \)[/tex]
- [tex]\( T_2 = 990 \, \text{K} \)[/tex]
3. Substitute the Values:
[tex]\[ k_2 = 3.241 \times 10^{-5} \cdot \exp \left[ \frac{245000}{8.314} \left( \frac{1}{800} - \frac{1}{990} \right) \right] \][/tex]
4. Calculate the Exponential Term:
First, calculate the difference in the reciprocals of the temperatures:
[tex]\[ \frac{1}{800} - \frac{1}{990} \][/tex]
Calculate each term separately:
[tex]\[ \frac{1}{800} = 0.00125 \][/tex]
[tex]\[ \frac{1}{990} \approx 0.001010101 \][/tex]
Then the difference:
[tex]\[ 0.00125 - 0.001010101 \approx 0.000239899 \][/tex]
Now calculate the exponent:
[tex]\[ \frac{245000}{8.314} \approx 29476 \][/tex]
[tex]\[ 29476 \times 0.000239899 \approx 7.073 \][/tex]
Thus, the rate constant can be expressed as:
[tex]\[ k_2 = 3.241 \times 10^{-5} \cdot \exp(7.073) \][/tex]
5. Calculate [tex]\( \exp(7.073) \)[/tex]:
[tex]\[ \exp(7.073) \approx 1176.25 \][/tex]
Therefore:
[tex]\[ k_2 \approx 3.241 \times 10^{-5} \times 1176.25 \approx 0.0381 \, \text{s}^{-1} \][/tex]
So, the rate constant [tex]\( k_2 \)[/tex] at [tex]\( 990 \, \text{K} \)[/tex] is approximately [tex]\(0.0381 \, \text{s}^{-1}\)[/tex].
Given:
- The rate constant [tex]\( k_{800K} \)[/tex] at 800 K is [tex]\( 3.241 \times 10^{-5} \, \text{s}^{-1} \)[/tex].
- The activation energy [tex]\( E_a \)[/tex] is [tex]\( 245 \, \text{kJ/mol} \)[/tex].
- We need to find the rate constant [tex]\( k_{990K} \)[/tex] at 990 K (which is [tex]\( 9.90 \times 10^2 \, \text{K} \)[/tex]).
- The universal gas constant [tex]\( R \)[/tex] is [tex]\( 8.314 \, \text{J/mol·K} \)[/tex] (Note: the activation energy needs to be in the same units as [tex]\( R \)[/tex], so convert [tex]\( E_a \)[/tex] from kJ to J).
1. Convert Activation Energy:
[tex]\[ E_a = 245 \, \text{kJ/mol} = 245 \times 10^3 \, \text{J/mol} = 245000 \, \text{J/mol} \][/tex]
2. Write the Arrhenius Equation:
The Arrhenius equation for the temperature dependence of the rate constant is:
[tex]\[ k_2 = k_1 \exp \left[ \frac{E_a}{R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right) \right] \][/tex]
Where:
- [tex]\( k_1 \)[/tex] and [tex]\( k_2 \)[/tex] are the rate constants at temperatures [tex]\( T_1 \)[/tex] and [tex]\( T_2 \)[/tex] respectively.
- [tex]\( T_1 = 800 \, \text{K} \)[/tex]
- [tex]\( T_2 = 990 \, \text{K} \)[/tex]
3. Substitute the Values:
[tex]\[ k_2 = 3.241 \times 10^{-5} \cdot \exp \left[ \frac{245000}{8.314} \left( \frac{1}{800} - \frac{1}{990} \right) \right] \][/tex]
4. Calculate the Exponential Term:
First, calculate the difference in the reciprocals of the temperatures:
[tex]\[ \frac{1}{800} - \frac{1}{990} \][/tex]
Calculate each term separately:
[tex]\[ \frac{1}{800} = 0.00125 \][/tex]
[tex]\[ \frac{1}{990} \approx 0.001010101 \][/tex]
Then the difference:
[tex]\[ 0.00125 - 0.001010101 \approx 0.000239899 \][/tex]
Now calculate the exponent:
[tex]\[ \frac{245000}{8.314} \approx 29476 \][/tex]
[tex]\[ 29476 \times 0.000239899 \approx 7.073 \][/tex]
Thus, the rate constant can be expressed as:
[tex]\[ k_2 = 3.241 \times 10^{-5} \cdot \exp(7.073) \][/tex]
5. Calculate [tex]\( \exp(7.073) \)[/tex]:
[tex]\[ \exp(7.073) \approx 1176.25 \][/tex]
Therefore:
[tex]\[ k_2 \approx 3.241 \times 10^{-5} \times 1176.25 \approx 0.0381 \, \text{s}^{-1} \][/tex]
So, the rate constant [tex]\( k_2 \)[/tex] at [tex]\( 990 \, \text{K} \)[/tex] is approximately [tex]\(0.0381 \, \text{s}^{-1}\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.