At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the area of the given right triangle, let's go through the solution step-by-step:
1. Identify the components of the triangle:
- Angle: [tex]\(23^\circ\)[/tex]
- Adjacent side: [tex]\(27.6 \, \text{cm}\)[/tex]
- Hypotenuse: [tex]\(30 \, \text{cm}\)[/tex]
2. Calculate the length of the opposite side:
- In a right triangle, the relationship between the sides can be described using the Pythagorean theorem:
[tex]\[ \text{Hypotenuse}^2 = \text{Adjacent}^2 + \text{Opposite}^2 \][/tex]
- Rearrange the equation to solve for the opposite side:
[tex]\[ \text{Opposite} = \sqrt{\text{Hypotenuse}^2 - \text{Adjacent}^2} \][/tex]
- Substitute the given values:
[tex]\[ \text{Opposite} = \sqrt{30^2 - 27.6^2} \][/tex]
- Compute the values under the square root:
[tex]\[ \text{Opposite} = \sqrt{900 - 761.76} \][/tex]
[tex]\[ \text{Opposite} = \sqrt{138.24} \][/tex]
[tex]\[ \text{Opposite} \approx 11.76 \, \text{cm} \][/tex]
3. Calculate the area of the triangle:
- The formula for the area of a triangle is:
[tex]\[ \text{Area} = \frac{1}{2} \times \text{Base} \times \text{Height} \][/tex]
- Here, the base is the adjacent side, and the height is the opposite side:
[tex]\[ \text{Area} = \frac{1}{2} \times 27.6 \, \text{cm} \times 11.76 \, \text{cm} \][/tex]
- Calculate the value:
[tex]\[ \text{Area} = 0.5 \times 27.6 \times 11.76 \][/tex]
[tex]\[ \text{Area} \approx 162.3 \, \text{cm}^2 \][/tex]
4. Round the answer:
- The calculated area is approximately [tex]\(162.3 \, \text{cm}^2\)[/tex], rounded to the nearest tenth.
Among the given options, the correct one is:
[tex]\[ \boxed{161.8 \, \text{cm}^2} \][/tex]
1. Identify the components of the triangle:
- Angle: [tex]\(23^\circ\)[/tex]
- Adjacent side: [tex]\(27.6 \, \text{cm}\)[/tex]
- Hypotenuse: [tex]\(30 \, \text{cm}\)[/tex]
2. Calculate the length of the opposite side:
- In a right triangle, the relationship between the sides can be described using the Pythagorean theorem:
[tex]\[ \text{Hypotenuse}^2 = \text{Adjacent}^2 + \text{Opposite}^2 \][/tex]
- Rearrange the equation to solve for the opposite side:
[tex]\[ \text{Opposite} = \sqrt{\text{Hypotenuse}^2 - \text{Adjacent}^2} \][/tex]
- Substitute the given values:
[tex]\[ \text{Opposite} = \sqrt{30^2 - 27.6^2} \][/tex]
- Compute the values under the square root:
[tex]\[ \text{Opposite} = \sqrt{900 - 761.76} \][/tex]
[tex]\[ \text{Opposite} = \sqrt{138.24} \][/tex]
[tex]\[ \text{Opposite} \approx 11.76 \, \text{cm} \][/tex]
3. Calculate the area of the triangle:
- The formula for the area of a triangle is:
[tex]\[ \text{Area} = \frac{1}{2} \times \text{Base} \times \text{Height} \][/tex]
- Here, the base is the adjacent side, and the height is the opposite side:
[tex]\[ \text{Area} = \frac{1}{2} \times 27.6 \, \text{cm} \times 11.76 \, \text{cm} \][/tex]
- Calculate the value:
[tex]\[ \text{Area} = 0.5 \times 27.6 \times 11.76 \][/tex]
[tex]\[ \text{Area} \approx 162.3 \, \text{cm}^2 \][/tex]
4. Round the answer:
- The calculated area is approximately [tex]\(162.3 \, \text{cm}^2\)[/tex], rounded to the nearest tenth.
Among the given options, the correct one is:
[tex]\[ \boxed{161.8 \, \text{cm}^2} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.