Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which graph represents the function [tex]\(y = \frac{2}{3}x - 2\)[/tex], we need to analyze the key characteristics of this linear function, specifically the slope and the y-intercept.
1. Identify the Slope and Y-intercept:
- The function [tex]\(y = \frac{2}{3}x - 2\)[/tex] is in slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept.
- Here, [tex]\(m = \frac{2}{3}\)[/tex] and [tex]\(b = -2\)[/tex].
2. Determine the Y-intercept:
- The y-intercept is the point where the line crosses the y-axis (i.e., when [tex]\(x = 0\)[/tex]).
- Plugging in [tex]\(x = 0\)[/tex] gives [tex]\(y = (2/3) \cdot 0 - 2 = -2\)[/tex].
- So, the y-intercept is [tex]\((0, -2)\)[/tex].
3. Determine Another Point:
- To confidently draw the line, we need another point on the line. Let's use [tex]\(x = 3\)[/tex].
- Plugging in [tex]\(x = 3\)[/tex] gives [tex]\(y = \frac{2}{3} \cdot 3 - 2 = 2 - 2 = 0\)[/tex].
- So, another point on the line is [tex]\((3, 0)\)[/tex].
4. Plot the Points and Draw the Line:
- Plot the two points [tex]\((0, -2)\)[/tex] and [tex]\((3, 0)\)[/tex] on the graph.
- Draw a straight line through these points.
By identifying these two points, [tex]\((0, -2)\)[/tex] and [tex]\((3, 0)\)[/tex], you can verify which graph correctly represents the function [tex]\(y = \frac{2}{3}x - 2\)[/tex]. Look for the graph that passes through these points and has the correct slope of [tex]\(\frac{2}{3}\)[/tex].
1. Identify the Slope and Y-intercept:
- The function [tex]\(y = \frac{2}{3}x - 2\)[/tex] is in slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept.
- Here, [tex]\(m = \frac{2}{3}\)[/tex] and [tex]\(b = -2\)[/tex].
2. Determine the Y-intercept:
- The y-intercept is the point where the line crosses the y-axis (i.e., when [tex]\(x = 0\)[/tex]).
- Plugging in [tex]\(x = 0\)[/tex] gives [tex]\(y = (2/3) \cdot 0 - 2 = -2\)[/tex].
- So, the y-intercept is [tex]\((0, -2)\)[/tex].
3. Determine Another Point:
- To confidently draw the line, we need another point on the line. Let's use [tex]\(x = 3\)[/tex].
- Plugging in [tex]\(x = 3\)[/tex] gives [tex]\(y = \frac{2}{3} \cdot 3 - 2 = 2 - 2 = 0\)[/tex].
- So, another point on the line is [tex]\((3, 0)\)[/tex].
4. Plot the Points and Draw the Line:
- Plot the two points [tex]\((0, -2)\)[/tex] and [tex]\((3, 0)\)[/tex] on the graph.
- Draw a straight line through these points.
By identifying these two points, [tex]\((0, -2)\)[/tex] and [tex]\((3, 0)\)[/tex], you can verify which graph correctly represents the function [tex]\(y = \frac{2}{3}x - 2\)[/tex]. Look for the graph that passes through these points and has the correct slope of [tex]\(\frac{2}{3}\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.