Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the length of one leg of a [tex]\(45^\circ\)[/tex]-[tex]\(45^\circ\)[/tex]-[tex]\(90^\circ\)[/tex] triangle given that the hypotenuse measures 4 cm, we need to use the properties of this special type of triangle.
A [tex]\(45^\circ\)[/tex]-[tex]\(45^\circ\)[/tex]-[tex]\(90^\circ\)[/tex] triangle is an isosceles right triangle, meaning the two legs are congruent. Additionally, the relationship between the legs and the hypotenuse in this triangle is given by:
[tex]\[ \text{Leg length} = \frac{\text{Hypotenuse}}{\sqrt{2}} \][/tex]
Given:
- Hypotenuse = 4 cm
Using the relationship:
[tex]\[ \text{Leg length} = \frac{4}{\sqrt{2}} \][/tex]
To simplify this expression, multiply the numerator and the denominator by [tex]\(\sqrt{2}\)[/tex]:
[tex]\[ \text{Leg length} = \frac{4}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{4\sqrt{2}}{2} = 2\sqrt{2} \][/tex]
So, the length of one leg of the triangle is [tex]\(2\sqrt{2}\)[/tex] cm.
Therefore, the correct answer is:
[tex]\[ \boxed{2 \sqrt{2} \text{ cm}} \][/tex]
A [tex]\(45^\circ\)[/tex]-[tex]\(45^\circ\)[/tex]-[tex]\(90^\circ\)[/tex] triangle is an isosceles right triangle, meaning the two legs are congruent. Additionally, the relationship between the legs and the hypotenuse in this triangle is given by:
[tex]\[ \text{Leg length} = \frac{\text{Hypotenuse}}{\sqrt{2}} \][/tex]
Given:
- Hypotenuse = 4 cm
Using the relationship:
[tex]\[ \text{Leg length} = \frac{4}{\sqrt{2}} \][/tex]
To simplify this expression, multiply the numerator and the denominator by [tex]\(\sqrt{2}\)[/tex]:
[tex]\[ \text{Leg length} = \frac{4}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{4\sqrt{2}}{2} = 2\sqrt{2} \][/tex]
So, the length of one leg of the triangle is [tex]\(2\sqrt{2}\)[/tex] cm.
Therefore, the correct answer is:
[tex]\[ \boxed{2 \sqrt{2} \text{ cm}} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.