Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's complete the table and then make observations about the relationships between the faces, edges, and vertices of Platonic solids.
1. Complete the Missing Values for the Cube:
[tex]\[ \begin{array}{|c|c|c|c|} \hline & \text{faces} & \text{vertices} & \text{edges} \\ \hline \text{tetrahedron} & 4 & 4 & 6 \\ \hline \text{cube} & 6 & 8 & 12 \\ \hline \text{dodecahedron} & 12 & 20 & 30 \\ \hline \end{array} \][/tex]
2. Observations about Platonic Solids:
- Observation 1: The number of edges ([tex]\(E\)[/tex]) is always greater than the number of faces ([tex]\(F\)[/tex]) for the cube.
[tex]\[ \text{For the cube: } E = 12, \; F = 6 \; \Rightarrow \; E > F \; \Rightarrow \; 12 > 6 \][/tex]
Therefore, [tex]\(E > F\)[/tex] holds true for the cube.
- Observation 2: The number of edges ([tex]\(E\)[/tex]) is always less than the sum of the number of faces and the number of vertices ([tex]\(F + V\)[/tex]) for the cube.
[tex]\[ \text{For the cube: } E = 12, \; F = 6, \; V = 8 \; \Rightarrow \; E < F + V \; \Rightarrow \; 12 < 6 + 8 \; \Rightarrow \; 12 < 14 \][/tex]
Therefore, [tex]\(E < F + V\)[/tex] holds true for the cube.
By examining the cube and the given observations, we can see consistent relationships between [tex]\(F\)[/tex], [tex]\(E\)[/tex], and [tex]\(V\)[/tex] for Platonic solids:
- The number of edges is always greater than the number of faces, [tex]\(E > F\)[/tex].
- The number of edges is always less than the sum of the number of faces and vertices, [tex]\(E < F + V\)[/tex].
These relationships are fundamental properties of Platonic solids.
1. Complete the Missing Values for the Cube:
[tex]\[ \begin{array}{|c|c|c|c|} \hline & \text{faces} & \text{vertices} & \text{edges} \\ \hline \text{tetrahedron} & 4 & 4 & 6 \\ \hline \text{cube} & 6 & 8 & 12 \\ \hline \text{dodecahedron} & 12 & 20 & 30 \\ \hline \end{array} \][/tex]
2. Observations about Platonic Solids:
- Observation 1: The number of edges ([tex]\(E\)[/tex]) is always greater than the number of faces ([tex]\(F\)[/tex]) for the cube.
[tex]\[ \text{For the cube: } E = 12, \; F = 6 \; \Rightarrow \; E > F \; \Rightarrow \; 12 > 6 \][/tex]
Therefore, [tex]\(E > F\)[/tex] holds true for the cube.
- Observation 2: The number of edges ([tex]\(E\)[/tex]) is always less than the sum of the number of faces and the number of vertices ([tex]\(F + V\)[/tex]) for the cube.
[tex]\[ \text{For the cube: } E = 12, \; F = 6, \; V = 8 \; \Rightarrow \; E < F + V \; \Rightarrow \; 12 < 6 + 8 \; \Rightarrow \; 12 < 14 \][/tex]
Therefore, [tex]\(E < F + V\)[/tex] holds true for the cube.
By examining the cube and the given observations, we can see consistent relationships between [tex]\(F\)[/tex], [tex]\(E\)[/tex], and [tex]\(V\)[/tex] for Platonic solids:
- The number of edges is always greater than the number of faces, [tex]\(E > F\)[/tex].
- The number of edges is always less than the sum of the number of faces and vertices, [tex]\(E < F + V\)[/tex].
These relationships are fundamental properties of Platonic solids.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.