Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's complete the table and then make observations about the relationships between the faces, edges, and vertices of Platonic solids.
1. Complete the Missing Values for the Cube:
[tex]\[ \begin{array}{|c|c|c|c|} \hline & \text{faces} & \text{vertices} & \text{edges} \\ \hline \text{tetrahedron} & 4 & 4 & 6 \\ \hline \text{cube} & 6 & 8 & 12 \\ \hline \text{dodecahedron} & 12 & 20 & 30 \\ \hline \end{array} \][/tex]
2. Observations about Platonic Solids:
- Observation 1: The number of edges ([tex]\(E\)[/tex]) is always greater than the number of faces ([tex]\(F\)[/tex]) for the cube.
[tex]\[ \text{For the cube: } E = 12, \; F = 6 \; \Rightarrow \; E > F \; \Rightarrow \; 12 > 6 \][/tex]
Therefore, [tex]\(E > F\)[/tex] holds true for the cube.
- Observation 2: The number of edges ([tex]\(E\)[/tex]) is always less than the sum of the number of faces and the number of vertices ([tex]\(F + V\)[/tex]) for the cube.
[tex]\[ \text{For the cube: } E = 12, \; F = 6, \; V = 8 \; \Rightarrow \; E < F + V \; \Rightarrow \; 12 < 6 + 8 \; \Rightarrow \; 12 < 14 \][/tex]
Therefore, [tex]\(E < F + V\)[/tex] holds true for the cube.
By examining the cube and the given observations, we can see consistent relationships between [tex]\(F\)[/tex], [tex]\(E\)[/tex], and [tex]\(V\)[/tex] for Platonic solids:
- The number of edges is always greater than the number of faces, [tex]\(E > F\)[/tex].
- The number of edges is always less than the sum of the number of faces and vertices, [tex]\(E < F + V\)[/tex].
These relationships are fundamental properties of Platonic solids.
1. Complete the Missing Values for the Cube:
[tex]\[ \begin{array}{|c|c|c|c|} \hline & \text{faces} & \text{vertices} & \text{edges} \\ \hline \text{tetrahedron} & 4 & 4 & 6 \\ \hline \text{cube} & 6 & 8 & 12 \\ \hline \text{dodecahedron} & 12 & 20 & 30 \\ \hline \end{array} \][/tex]
2. Observations about Platonic Solids:
- Observation 1: The number of edges ([tex]\(E\)[/tex]) is always greater than the number of faces ([tex]\(F\)[/tex]) for the cube.
[tex]\[ \text{For the cube: } E = 12, \; F = 6 \; \Rightarrow \; E > F \; \Rightarrow \; 12 > 6 \][/tex]
Therefore, [tex]\(E > F\)[/tex] holds true for the cube.
- Observation 2: The number of edges ([tex]\(E\)[/tex]) is always less than the sum of the number of faces and the number of vertices ([tex]\(F + V\)[/tex]) for the cube.
[tex]\[ \text{For the cube: } E = 12, \; F = 6, \; V = 8 \; \Rightarrow \; E < F + V \; \Rightarrow \; 12 < 6 + 8 \; \Rightarrow \; 12 < 14 \][/tex]
Therefore, [tex]\(E < F + V\)[/tex] holds true for the cube.
By examining the cube and the given observations, we can see consistent relationships between [tex]\(F\)[/tex], [tex]\(E\)[/tex], and [tex]\(V\)[/tex] for Platonic solids:
- The number of edges is always greater than the number of faces, [tex]\(E > F\)[/tex].
- The number of edges is always less than the sum of the number of faces and vertices, [tex]\(E < F + V\)[/tex].
These relationships are fundamental properties of Platonic solids.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.