Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the focus and directrix of the given parabola equation:
[tex]\[ (y - 1)^2 = 4(x - 1) \][/tex]
we should start by rewriting it in the standard form of a parabola that opens horizontally. The standard form is:
[tex]\[ (y - k)^2 = 4p(x - h) \][/tex]
where [tex]\((h, k)\)[/tex] is the vertex of the parabola, and [tex]\(p\)[/tex] is the distance from the vertex to the focus (and also to the directrix).
In this equation:
- Matching [tex]\((y - 1)^2 = 4(x - 1)\)[/tex] to the standard form, we identify [tex]\(h = 1\)[/tex], [tex]\(k = 1\)[/tex], and [tex]\(4p = 4\)[/tex].
We solve for [tex]\(p\)[/tex]:
- [tex]\(p = \frac{4}{4} = 1\)[/tex]
The focus of the parabola is found using [tex]\((h + p, k)\)[/tex]:
- [tex]\(h + p = 1 + 1 = 2\)[/tex]
- [tex]\(k = 1\)[/tex]
So, the coordinates of the focus are:
[tex]\[ (2, 1) \][/tex]
The directrix is a vertical line given by [tex]\(x = h - p\)[/tex]:
- [tex]\(h - p = 1 - 1 = 0\)[/tex]
So, the directrix is:
[tex]\[ x = 0 \][/tex]
Therefore, the focus and directrix of the parabola [tex]\((y - 1)^2 = 4(x - 1)\)[/tex] are:
Focus: [tex]\((2, 1)\)[/tex]
Directrix: [tex]\(x = 0\)[/tex]
So the final answers are:
[tex]\[ \text{Focus: } (2, 1) \][/tex]
[tex]\[ \text{Directrix: } x = 0 \][/tex]
[tex]\[ (y - 1)^2 = 4(x - 1) \][/tex]
we should start by rewriting it in the standard form of a parabola that opens horizontally. The standard form is:
[tex]\[ (y - k)^2 = 4p(x - h) \][/tex]
where [tex]\((h, k)\)[/tex] is the vertex of the parabola, and [tex]\(p\)[/tex] is the distance from the vertex to the focus (and also to the directrix).
In this equation:
- Matching [tex]\((y - 1)^2 = 4(x - 1)\)[/tex] to the standard form, we identify [tex]\(h = 1\)[/tex], [tex]\(k = 1\)[/tex], and [tex]\(4p = 4\)[/tex].
We solve for [tex]\(p\)[/tex]:
- [tex]\(p = \frac{4}{4} = 1\)[/tex]
The focus of the parabola is found using [tex]\((h + p, k)\)[/tex]:
- [tex]\(h + p = 1 + 1 = 2\)[/tex]
- [tex]\(k = 1\)[/tex]
So, the coordinates of the focus are:
[tex]\[ (2, 1) \][/tex]
The directrix is a vertical line given by [tex]\(x = h - p\)[/tex]:
- [tex]\(h - p = 1 - 1 = 0\)[/tex]
So, the directrix is:
[tex]\[ x = 0 \][/tex]
Therefore, the focus and directrix of the parabola [tex]\((y - 1)^2 = 4(x - 1)\)[/tex] are:
Focus: [tex]\((2, 1)\)[/tex]
Directrix: [tex]\(x = 0\)[/tex]
So the final answers are:
[tex]\[ \text{Focus: } (2, 1) \][/tex]
[tex]\[ \text{Directrix: } x = 0 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.