Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the focus and directrix of the given parabola
[tex]\[ (y + 3)^2 = 16(x - 4), \][/tex]
we can follow these steps:
### Step 1: Identify the Standard Form
The equation can be written in the form
[tex]\[ (y - k)^2 = 4p(x - h), \][/tex]
which describes a horizontal parabola opening to the right.
Comparing with the given equation [tex]\((y + 3)^2 = 16(x - 4)\)[/tex], we get:
- [tex]\(h = 4\)[/tex]
- [tex]\(k = -3\)[/tex]
- [tex]\(4p = 16\)[/tex], thus [tex]\(p = 4\)[/tex]
### Step 2: Determine the Focus
The focus of a parabola given by [tex]\((y - k)^2 = 4p(x - h)\)[/tex] is located at [tex]\((h + p, k)\)[/tex].
So, substituting [tex]\(h\)[/tex], [tex]\(k\)[/tex], and [tex]\(p\)[/tex]:
[tex]\[ h = 4, \quad k = -3, \quad p = 4 \][/tex]
[tex]\[ \text{Focus} = (h + p, k) = (4 + 4, -3) = (8, -3) \][/tex]
### Step 3: Determine the Directrix
The directrix of a parabola given by [tex]\((y - k)^2 = 4p(x - h)\)[/tex] is the line [tex]\(x = h - p\)[/tex].
So, substituting [tex]\(h\)[/tex] and [tex]\(p\)[/tex]:
[tex]\[ h = 4, \quad p = 4 \][/tex]
[tex]\[ \text{Directrix} = x = h - p = 4 - 4 = 0 \][/tex]
### Conclusion
The focus and directrix of the given parabola [tex]\((y + 3)^2 = 16(x - 4)\)[/tex] are:
- Focus: [tex]\((8, -3)\)[/tex]
- Directrix: [tex]\(x = 0\)[/tex]
Therefore:
- Focus: ([>8<], [-3])
- Directrix: [tex]\(x = \)[/tex] [>0<]
[tex]\[ (y + 3)^2 = 16(x - 4), \][/tex]
we can follow these steps:
### Step 1: Identify the Standard Form
The equation can be written in the form
[tex]\[ (y - k)^2 = 4p(x - h), \][/tex]
which describes a horizontal parabola opening to the right.
Comparing with the given equation [tex]\((y + 3)^2 = 16(x - 4)\)[/tex], we get:
- [tex]\(h = 4\)[/tex]
- [tex]\(k = -3\)[/tex]
- [tex]\(4p = 16\)[/tex], thus [tex]\(p = 4\)[/tex]
### Step 2: Determine the Focus
The focus of a parabola given by [tex]\((y - k)^2 = 4p(x - h)\)[/tex] is located at [tex]\((h + p, k)\)[/tex].
So, substituting [tex]\(h\)[/tex], [tex]\(k\)[/tex], and [tex]\(p\)[/tex]:
[tex]\[ h = 4, \quad k = -3, \quad p = 4 \][/tex]
[tex]\[ \text{Focus} = (h + p, k) = (4 + 4, -3) = (8, -3) \][/tex]
### Step 3: Determine the Directrix
The directrix of a parabola given by [tex]\((y - k)^2 = 4p(x - h)\)[/tex] is the line [tex]\(x = h - p\)[/tex].
So, substituting [tex]\(h\)[/tex] and [tex]\(p\)[/tex]:
[tex]\[ h = 4, \quad p = 4 \][/tex]
[tex]\[ \text{Directrix} = x = h - p = 4 - 4 = 0 \][/tex]
### Conclusion
The focus and directrix of the given parabola [tex]\((y + 3)^2 = 16(x - 4)\)[/tex] are:
- Focus: [tex]\((8, -3)\)[/tex]
- Directrix: [tex]\(x = 0\)[/tex]
Therefore:
- Focus: ([>8<], [-3])
- Directrix: [tex]\(x = \)[/tex] [>0<]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.