Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's solve the given system of linear equations step by step. The system is as follows:
[tex]\[ \begin{cases} 5x - 2y + z = 24 \\ 2x + 5y + 2z = -14 \\ x - 4y + 3z = 26 \end{cases} \][/tex]
To solve this system, we need to find the values of [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex] that satisfy all three equations simultaneously. Here's a step-by-step solution:
### Step 1: Write the equations in matrix form
We can express the system of equations in matrix form as [tex]\( AX = B \)[/tex], where:
- [tex]\( A \)[/tex] is the coefficient matrix
- [tex]\( X \)[/tex] is the column matrix of variables [tex]\( x, y, z \)[/tex]
- [tex]\( B \)[/tex] is the column matrix of constants
[tex]\[ A = \begin{pmatrix} 5 & -2 & 1 \\ 2 & 5 & 2 \\ 1 & -4 & 3 \\ \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \\ \end{pmatrix}, \quad B = \begin{pmatrix} 24 \\ -14 \\ 26 \\ \end{pmatrix} \][/tex]
### Step 2: Solve the matrix equation [tex]\( AX = B \)[/tex]
To find [tex]\( X \)[/tex], we need to solve the matrix equation for [tex]\( X \)[/tex]. This is done by calculating the inverse of the matrix [tex]\( A \)[/tex] and then multiplying it by the matrix [tex]\( B \)[/tex]:
[tex]\[ X = A^{-1}B \][/tex]
### Step 3: Compute the result
Performing the matrix calculations, we obtain:
[tex]\[ X = \begin{pmatrix} x \\ y \\ z \\ \end{pmatrix} = \begin{pmatrix} 2.63636364 \\ -4.54545455 \\ 1.72727273 \\ \end{pmatrix} \][/tex]
### Conclusion
Thus, the solution to the system of equations is:
[tex]\[ \boxed{x = 2.63636364, \quad y = -4.54545455, \quad z = 1.72727273} \][/tex]
These values of [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex] satisfy all three given equations.
[tex]\[ \begin{cases} 5x - 2y + z = 24 \\ 2x + 5y + 2z = -14 \\ x - 4y + 3z = 26 \end{cases} \][/tex]
To solve this system, we need to find the values of [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex] that satisfy all three equations simultaneously. Here's a step-by-step solution:
### Step 1: Write the equations in matrix form
We can express the system of equations in matrix form as [tex]\( AX = B \)[/tex], where:
- [tex]\( A \)[/tex] is the coefficient matrix
- [tex]\( X \)[/tex] is the column matrix of variables [tex]\( x, y, z \)[/tex]
- [tex]\( B \)[/tex] is the column matrix of constants
[tex]\[ A = \begin{pmatrix} 5 & -2 & 1 \\ 2 & 5 & 2 \\ 1 & -4 & 3 \\ \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \\ \end{pmatrix}, \quad B = \begin{pmatrix} 24 \\ -14 \\ 26 \\ \end{pmatrix} \][/tex]
### Step 2: Solve the matrix equation [tex]\( AX = B \)[/tex]
To find [tex]\( X \)[/tex], we need to solve the matrix equation for [tex]\( X \)[/tex]. This is done by calculating the inverse of the matrix [tex]\( A \)[/tex] and then multiplying it by the matrix [tex]\( B \)[/tex]:
[tex]\[ X = A^{-1}B \][/tex]
### Step 3: Compute the result
Performing the matrix calculations, we obtain:
[tex]\[ X = \begin{pmatrix} x \\ y \\ z \\ \end{pmatrix} = \begin{pmatrix} 2.63636364 \\ -4.54545455 \\ 1.72727273 \\ \end{pmatrix} \][/tex]
### Conclusion
Thus, the solution to the system of equations is:
[tex]\[ \boxed{x = 2.63636364, \quad y = -4.54545455, \quad z = 1.72727273} \][/tex]
These values of [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex] satisfy all three given equations.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.