Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
First, let's understand the problem:
- Avi weighs 40 kg.
- The spring constant of the trampoline is [tex]\(176,400 \frac{N}{m}\)[/tex].
- Avi compresses the trampoline by [tex]\(20 \text{ cm}\)[/tex], which is [tex]\(0.20 \text{ meters}\)[/tex].
To find out how high Avi should reach, we follow these steps:
1. Calculate the Potential Energy (PE) stored in the compressed trampoline:
The potential energy stored in a compressed spring is given by the formula:
[tex]\[ PE = \frac{1}{2} k x^2 \][/tex]
where [tex]\(k\)[/tex] is the spring constant and [tex]\(x\)[/tex] is the compression distance.
Plugging in the values:
[tex]\[ PE = \frac{1}{2} \times 176,400 \frac{N}{m} \times (0.20 \text{ m})^2 \][/tex]
[tex]\[ PE = \frac{1}{2} \times 176,400 \times 0.04 \][/tex]
[tex]\[ PE = 3,528 \text{ Joules} \][/tex]
2. Convert Avi's weight to force:
The force due to gravity on Avi can be calculated as:
[tex]\[ F = m \times g \][/tex]
where [tex]\(m\)[/tex] is Avi's mass (40 kg) and [tex]\(g\)[/tex] is the acceleration due to gravity, which is [tex]\(9.81 \frac{m}{s^2}\)[/tex].
[tex]\[ F = 40 \text{ kg} \times 9.81 \frac{m}{s^2} \][/tex]
[tex]\[ F = 392.4 \text{ Newtons} \][/tex]
3. Determine the height (h) she should reach:
The potential energy converted to gravitational potential energy when she reaches a height [tex]\(h\)[/tex] is given by:
[tex]\[ PE = m \times g \times h \][/tex]
We know the potential energy (3,528 Joules) and the force (392.4 Newtons), hence:
[tex]\[ 3,528 = 392.4 \times h \][/tex]
Solving for [tex]\(h\)[/tex]:
[tex]\[ h = \frac{3,528}{392.4} \][/tex]
[tex]\[ h \approx 8.99 \text{ meters} \][/tex]
Therefore, Avi should reach approximately [tex]\(8.99 \text{ meters}\)[/tex] high.
- Avi weighs 40 kg.
- The spring constant of the trampoline is [tex]\(176,400 \frac{N}{m}\)[/tex].
- Avi compresses the trampoline by [tex]\(20 \text{ cm}\)[/tex], which is [tex]\(0.20 \text{ meters}\)[/tex].
To find out how high Avi should reach, we follow these steps:
1. Calculate the Potential Energy (PE) stored in the compressed trampoline:
The potential energy stored in a compressed spring is given by the formula:
[tex]\[ PE = \frac{1}{2} k x^2 \][/tex]
where [tex]\(k\)[/tex] is the spring constant and [tex]\(x\)[/tex] is the compression distance.
Plugging in the values:
[tex]\[ PE = \frac{1}{2} \times 176,400 \frac{N}{m} \times (0.20 \text{ m})^2 \][/tex]
[tex]\[ PE = \frac{1}{2} \times 176,400 \times 0.04 \][/tex]
[tex]\[ PE = 3,528 \text{ Joules} \][/tex]
2. Convert Avi's weight to force:
The force due to gravity on Avi can be calculated as:
[tex]\[ F = m \times g \][/tex]
where [tex]\(m\)[/tex] is Avi's mass (40 kg) and [tex]\(g\)[/tex] is the acceleration due to gravity, which is [tex]\(9.81 \frac{m}{s^2}\)[/tex].
[tex]\[ F = 40 \text{ kg} \times 9.81 \frac{m}{s^2} \][/tex]
[tex]\[ F = 392.4 \text{ Newtons} \][/tex]
3. Determine the height (h) she should reach:
The potential energy converted to gravitational potential energy when she reaches a height [tex]\(h\)[/tex] is given by:
[tex]\[ PE = m \times g \times h \][/tex]
We know the potential energy (3,528 Joules) and the force (392.4 Newtons), hence:
[tex]\[ 3,528 = 392.4 \times h \][/tex]
Solving for [tex]\(h\)[/tex]:
[tex]\[ h = \frac{3,528}{392.4} \][/tex]
[tex]\[ h \approx 8.99 \text{ meters} \][/tex]
Therefore, Avi should reach approximately [tex]\(8.99 \text{ meters}\)[/tex] high.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.