Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
First, let's understand the problem:
- Avi weighs 40 kg.
- The spring constant of the trampoline is [tex]\(176,400 \frac{N}{m}\)[/tex].
- Avi compresses the trampoline by [tex]\(20 \text{ cm}\)[/tex], which is [tex]\(0.20 \text{ meters}\)[/tex].
To find out how high Avi should reach, we follow these steps:
1. Calculate the Potential Energy (PE) stored in the compressed trampoline:
The potential energy stored in a compressed spring is given by the formula:
[tex]\[ PE = \frac{1}{2} k x^2 \][/tex]
where [tex]\(k\)[/tex] is the spring constant and [tex]\(x\)[/tex] is the compression distance.
Plugging in the values:
[tex]\[ PE = \frac{1}{2} \times 176,400 \frac{N}{m} \times (0.20 \text{ m})^2 \][/tex]
[tex]\[ PE = \frac{1}{2} \times 176,400 \times 0.04 \][/tex]
[tex]\[ PE = 3,528 \text{ Joules} \][/tex]
2. Convert Avi's weight to force:
The force due to gravity on Avi can be calculated as:
[tex]\[ F = m \times g \][/tex]
where [tex]\(m\)[/tex] is Avi's mass (40 kg) and [tex]\(g\)[/tex] is the acceleration due to gravity, which is [tex]\(9.81 \frac{m}{s^2}\)[/tex].
[tex]\[ F = 40 \text{ kg} \times 9.81 \frac{m}{s^2} \][/tex]
[tex]\[ F = 392.4 \text{ Newtons} \][/tex]
3. Determine the height (h) she should reach:
The potential energy converted to gravitational potential energy when she reaches a height [tex]\(h\)[/tex] is given by:
[tex]\[ PE = m \times g \times h \][/tex]
We know the potential energy (3,528 Joules) and the force (392.4 Newtons), hence:
[tex]\[ 3,528 = 392.4 \times h \][/tex]
Solving for [tex]\(h\)[/tex]:
[tex]\[ h = \frac{3,528}{392.4} \][/tex]
[tex]\[ h \approx 8.99 \text{ meters} \][/tex]
Therefore, Avi should reach approximately [tex]\(8.99 \text{ meters}\)[/tex] high.
- Avi weighs 40 kg.
- The spring constant of the trampoline is [tex]\(176,400 \frac{N}{m}\)[/tex].
- Avi compresses the trampoline by [tex]\(20 \text{ cm}\)[/tex], which is [tex]\(0.20 \text{ meters}\)[/tex].
To find out how high Avi should reach, we follow these steps:
1. Calculate the Potential Energy (PE) stored in the compressed trampoline:
The potential energy stored in a compressed spring is given by the formula:
[tex]\[ PE = \frac{1}{2} k x^2 \][/tex]
where [tex]\(k\)[/tex] is the spring constant and [tex]\(x\)[/tex] is the compression distance.
Plugging in the values:
[tex]\[ PE = \frac{1}{2} \times 176,400 \frac{N}{m} \times (0.20 \text{ m})^2 \][/tex]
[tex]\[ PE = \frac{1}{2} \times 176,400 \times 0.04 \][/tex]
[tex]\[ PE = 3,528 \text{ Joules} \][/tex]
2. Convert Avi's weight to force:
The force due to gravity on Avi can be calculated as:
[tex]\[ F = m \times g \][/tex]
where [tex]\(m\)[/tex] is Avi's mass (40 kg) and [tex]\(g\)[/tex] is the acceleration due to gravity, which is [tex]\(9.81 \frac{m}{s^2}\)[/tex].
[tex]\[ F = 40 \text{ kg} \times 9.81 \frac{m}{s^2} \][/tex]
[tex]\[ F = 392.4 \text{ Newtons} \][/tex]
3. Determine the height (h) she should reach:
The potential energy converted to gravitational potential energy when she reaches a height [tex]\(h\)[/tex] is given by:
[tex]\[ PE = m \times g \times h \][/tex]
We know the potential energy (3,528 Joules) and the force (392.4 Newtons), hence:
[tex]\[ 3,528 = 392.4 \times h \][/tex]
Solving for [tex]\(h\)[/tex]:
[tex]\[ h = \frac{3,528}{392.4} \][/tex]
[tex]\[ h \approx 8.99 \text{ meters} \][/tex]
Therefore, Avi should reach approximately [tex]\(8.99 \text{ meters}\)[/tex] high.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.