Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which scenario generates the most elastic potential energy, we need to calculate the elastic potential energy [tex]\( U \)[/tex] for each of the four scenarios. The formula for elastic potential energy in a spring is given by:
[tex]\[ U = \frac{1}{2} k x^2 \][/tex]
where [tex]\( k \)[/tex] is the spring constant and [tex]\( x \)[/tex] is the displacement (or compression) from the equilibrium position.
Let's calculate the elastic potential energy for each scenario:
### Scenario A
- Spring constant [tex]\( k_A = 3 \frac{N}{m} \)[/tex]
- Compression [tex]\( x_A = 1.0 \, m \)[/tex]
[tex]\[ U_A = \frac{1}{2} k_A x_A^2 \\ U_A = \frac{1}{2} \times 3 \times (1.0)^2 \\ U_A = \frac{1}{2} \times 3 \times 1.0 \\ U_A = \frac{3}{2} \\ U_A = 1.5 \, \text{J} \][/tex]
### Scenario B
- Spring constant [tex]\( k_B = 6 \frac{N}{m} \)[/tex]
- Compression [tex]\( x_B = 0.8 \, m \)[/tex]
[tex]\[ U_B = \frac{1}{2} k_B x_B^2 \\ U_B = \frac{1}{2} \times 6 \times (0.8)^2 \\ U_B = \frac{1}{2} \times 6 \times 0.64 \\ U_B = \frac{6 \times 0.64}{2} \\ U_B = 1.920 \, \text{J} \][/tex]
### Scenario C
- Spring constant [tex]\( k_C = 9 \frac{N}{m} \)[/tex]
- Compression [tex]\( x_C = 0.6 \, m \)[/tex]
[tex]\[ U_C = \frac{1}{2} k_C x_C^2 \\ U_C = \frac{1}{2} \times 9 \times (0.6)^2 \\ U_C = \frac{1}{2} \times 9 \times 0.36 \\ U_C = \frac{9 \times 0.36}{2} \\ U_C = 1.620 \, \text{J} \][/tex]
### Scenario D
- Spring constant [tex]\( k_D = 12 \frac{N}{m} \)[/tex]
- Compression [tex]\( x_D = 0.4 \, m \)[/tex]
[tex]\[ U_D = \frac{1}{2} k_D x_D^2 \\ U_D = \frac{1}{2} \times 12 \times (0.4)^2 \\ U_D = \frac{1}{2} \times 12 \times 0.16 \\ U_D = \frac{12 \times 0.16}{2} \\ U_D = 0.960 \, \text{J} \][/tex]
### Comparison
Now we have the calculated elastic potential energies for each scenario:
- [tex]\( U_A = 1.5 \, \text{J} \)[/tex]
- [tex]\( U_B = 1.920 \, \text{J} \)[/tex]
- [tex]\( U_C = 1.620 \, \text{J} \)[/tex]
- [tex]\( U_D = 0.960 \, \text{J} \)[/tex]
The highest value among these elastic potential energies is [tex]\( 1.920 \, \text{J} \)[/tex], which comes from Scenario B.
Therefore, the scenario that generates the most elastic potential energy is:
Scenario B.
[tex]\[ U = \frac{1}{2} k x^2 \][/tex]
where [tex]\( k \)[/tex] is the spring constant and [tex]\( x \)[/tex] is the displacement (or compression) from the equilibrium position.
Let's calculate the elastic potential energy for each scenario:
### Scenario A
- Spring constant [tex]\( k_A = 3 \frac{N}{m} \)[/tex]
- Compression [tex]\( x_A = 1.0 \, m \)[/tex]
[tex]\[ U_A = \frac{1}{2} k_A x_A^2 \\ U_A = \frac{1}{2} \times 3 \times (1.0)^2 \\ U_A = \frac{1}{2} \times 3 \times 1.0 \\ U_A = \frac{3}{2} \\ U_A = 1.5 \, \text{J} \][/tex]
### Scenario B
- Spring constant [tex]\( k_B = 6 \frac{N}{m} \)[/tex]
- Compression [tex]\( x_B = 0.8 \, m \)[/tex]
[tex]\[ U_B = \frac{1}{2} k_B x_B^2 \\ U_B = \frac{1}{2} \times 6 \times (0.8)^2 \\ U_B = \frac{1}{2} \times 6 \times 0.64 \\ U_B = \frac{6 \times 0.64}{2} \\ U_B = 1.920 \, \text{J} \][/tex]
### Scenario C
- Spring constant [tex]\( k_C = 9 \frac{N}{m} \)[/tex]
- Compression [tex]\( x_C = 0.6 \, m \)[/tex]
[tex]\[ U_C = \frac{1}{2} k_C x_C^2 \\ U_C = \frac{1}{2} \times 9 \times (0.6)^2 \\ U_C = \frac{1}{2} \times 9 \times 0.36 \\ U_C = \frac{9 \times 0.36}{2} \\ U_C = 1.620 \, \text{J} \][/tex]
### Scenario D
- Spring constant [tex]\( k_D = 12 \frac{N}{m} \)[/tex]
- Compression [tex]\( x_D = 0.4 \, m \)[/tex]
[tex]\[ U_D = \frac{1}{2} k_D x_D^2 \\ U_D = \frac{1}{2} \times 12 \times (0.4)^2 \\ U_D = \frac{1}{2} \times 12 \times 0.16 \\ U_D = \frac{12 \times 0.16}{2} \\ U_D = 0.960 \, \text{J} \][/tex]
### Comparison
Now we have the calculated elastic potential energies for each scenario:
- [tex]\( U_A = 1.5 \, \text{J} \)[/tex]
- [tex]\( U_B = 1.920 \, \text{J} \)[/tex]
- [tex]\( U_C = 1.620 \, \text{J} \)[/tex]
- [tex]\( U_D = 0.960 \, \text{J} \)[/tex]
The highest value among these elastic potential energies is [tex]\( 1.920 \, \text{J} \)[/tex], which comes from Scenario B.
Therefore, the scenario that generates the most elastic potential energy is:
Scenario B.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.