Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which scenario generates the most elastic potential energy, we need to calculate the elastic potential energy [tex]\( U \)[/tex] for each of the four scenarios. The formula for elastic potential energy in a spring is given by:
[tex]\[ U = \frac{1}{2} k x^2 \][/tex]
where [tex]\( k \)[/tex] is the spring constant and [tex]\( x \)[/tex] is the displacement (or compression) from the equilibrium position.
Let's calculate the elastic potential energy for each scenario:
### Scenario A
- Spring constant [tex]\( k_A = 3 \frac{N}{m} \)[/tex]
- Compression [tex]\( x_A = 1.0 \, m \)[/tex]
[tex]\[ U_A = \frac{1}{2} k_A x_A^2 \\ U_A = \frac{1}{2} \times 3 \times (1.0)^2 \\ U_A = \frac{1}{2} \times 3 \times 1.0 \\ U_A = \frac{3}{2} \\ U_A = 1.5 \, \text{J} \][/tex]
### Scenario B
- Spring constant [tex]\( k_B = 6 \frac{N}{m} \)[/tex]
- Compression [tex]\( x_B = 0.8 \, m \)[/tex]
[tex]\[ U_B = \frac{1}{2} k_B x_B^2 \\ U_B = \frac{1}{2} \times 6 \times (0.8)^2 \\ U_B = \frac{1}{2} \times 6 \times 0.64 \\ U_B = \frac{6 \times 0.64}{2} \\ U_B = 1.920 \, \text{J} \][/tex]
### Scenario C
- Spring constant [tex]\( k_C = 9 \frac{N}{m} \)[/tex]
- Compression [tex]\( x_C = 0.6 \, m \)[/tex]
[tex]\[ U_C = \frac{1}{2} k_C x_C^2 \\ U_C = \frac{1}{2} \times 9 \times (0.6)^2 \\ U_C = \frac{1}{2} \times 9 \times 0.36 \\ U_C = \frac{9 \times 0.36}{2} \\ U_C = 1.620 \, \text{J} \][/tex]
### Scenario D
- Spring constant [tex]\( k_D = 12 \frac{N}{m} \)[/tex]
- Compression [tex]\( x_D = 0.4 \, m \)[/tex]
[tex]\[ U_D = \frac{1}{2} k_D x_D^2 \\ U_D = \frac{1}{2} \times 12 \times (0.4)^2 \\ U_D = \frac{1}{2} \times 12 \times 0.16 \\ U_D = \frac{12 \times 0.16}{2} \\ U_D = 0.960 \, \text{J} \][/tex]
### Comparison
Now we have the calculated elastic potential energies for each scenario:
- [tex]\( U_A = 1.5 \, \text{J} \)[/tex]
- [tex]\( U_B = 1.920 \, \text{J} \)[/tex]
- [tex]\( U_C = 1.620 \, \text{J} \)[/tex]
- [tex]\( U_D = 0.960 \, \text{J} \)[/tex]
The highest value among these elastic potential energies is [tex]\( 1.920 \, \text{J} \)[/tex], which comes from Scenario B.
Therefore, the scenario that generates the most elastic potential energy is:
Scenario B.
[tex]\[ U = \frac{1}{2} k x^2 \][/tex]
where [tex]\( k \)[/tex] is the spring constant and [tex]\( x \)[/tex] is the displacement (or compression) from the equilibrium position.
Let's calculate the elastic potential energy for each scenario:
### Scenario A
- Spring constant [tex]\( k_A = 3 \frac{N}{m} \)[/tex]
- Compression [tex]\( x_A = 1.0 \, m \)[/tex]
[tex]\[ U_A = \frac{1}{2} k_A x_A^2 \\ U_A = \frac{1}{2} \times 3 \times (1.0)^2 \\ U_A = \frac{1}{2} \times 3 \times 1.0 \\ U_A = \frac{3}{2} \\ U_A = 1.5 \, \text{J} \][/tex]
### Scenario B
- Spring constant [tex]\( k_B = 6 \frac{N}{m} \)[/tex]
- Compression [tex]\( x_B = 0.8 \, m \)[/tex]
[tex]\[ U_B = \frac{1}{2} k_B x_B^2 \\ U_B = \frac{1}{2} \times 6 \times (0.8)^2 \\ U_B = \frac{1}{2} \times 6 \times 0.64 \\ U_B = \frac{6 \times 0.64}{2} \\ U_B = 1.920 \, \text{J} \][/tex]
### Scenario C
- Spring constant [tex]\( k_C = 9 \frac{N}{m} \)[/tex]
- Compression [tex]\( x_C = 0.6 \, m \)[/tex]
[tex]\[ U_C = \frac{1}{2} k_C x_C^2 \\ U_C = \frac{1}{2} \times 9 \times (0.6)^2 \\ U_C = \frac{1}{2} \times 9 \times 0.36 \\ U_C = \frac{9 \times 0.36}{2} \\ U_C = 1.620 \, \text{J} \][/tex]
### Scenario D
- Spring constant [tex]\( k_D = 12 \frac{N}{m} \)[/tex]
- Compression [tex]\( x_D = 0.4 \, m \)[/tex]
[tex]\[ U_D = \frac{1}{2} k_D x_D^2 \\ U_D = \frac{1}{2} \times 12 \times (0.4)^2 \\ U_D = \frac{1}{2} \times 12 \times 0.16 \\ U_D = \frac{12 \times 0.16}{2} \\ U_D = 0.960 \, \text{J} \][/tex]
### Comparison
Now we have the calculated elastic potential energies for each scenario:
- [tex]\( U_A = 1.5 \, \text{J} \)[/tex]
- [tex]\( U_B = 1.920 \, \text{J} \)[/tex]
- [tex]\( U_C = 1.620 \, \text{J} \)[/tex]
- [tex]\( U_D = 0.960 \, \text{J} \)[/tex]
The highest value among these elastic potential energies is [tex]\( 1.920 \, \text{J} \)[/tex], which comes from Scenario B.
Therefore, the scenario that generates the most elastic potential energy is:
Scenario B.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.