Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Read each scenario and then answer the question.

Scenario A: A [tex]\( 3 \frac{N}{m} \)[/tex] spring is compressed a distance of [tex]\( 1.0 \, m \)[/tex].

Scenario B: A [tex]\( 6 \frac{N}{m} \)[/tex] spring is compressed a distance of [tex]\( 0.8 \, m \)[/tex].

Scenario C: A [tex]\( 9 \frac{N}{m} \)[/tex] spring is compressed a distance of [tex]\( 0.6 \, m \)[/tex].

Scenario D: A [tex]\( 12 \frac{N}{m} \)[/tex] spring is compressed a distance of [tex]\( 0.4 \, m \)[/tex].

Which scenario generates the most elastic potential energy? [tex]\(\square\)[/tex]

Sagot :

To determine which scenario generates the most elastic potential energy, we need to calculate the elastic potential energy [tex]\( U \)[/tex] for each of the four scenarios. The formula for elastic potential energy in a spring is given by:

[tex]\[ U = \frac{1}{2} k x^2 \][/tex]

where [tex]\( k \)[/tex] is the spring constant and [tex]\( x \)[/tex] is the displacement (or compression) from the equilibrium position.

Let's calculate the elastic potential energy for each scenario:

### Scenario A
- Spring constant [tex]\( k_A = 3 \frac{N}{m} \)[/tex]
- Compression [tex]\( x_A = 1.0 \, m \)[/tex]

[tex]\[ U_A = \frac{1}{2} k_A x_A^2 \\ U_A = \frac{1}{2} \times 3 \times (1.0)^2 \\ U_A = \frac{1}{2} \times 3 \times 1.0 \\ U_A = \frac{3}{2} \\ U_A = 1.5 \, \text{J} \][/tex]

### Scenario B
- Spring constant [tex]\( k_B = 6 \frac{N}{m} \)[/tex]
- Compression [tex]\( x_B = 0.8 \, m \)[/tex]

[tex]\[ U_B = \frac{1}{2} k_B x_B^2 \\ U_B = \frac{1}{2} \times 6 \times (0.8)^2 \\ U_B = \frac{1}{2} \times 6 \times 0.64 \\ U_B = \frac{6 \times 0.64}{2} \\ U_B = 1.920 \, \text{J} \][/tex]

### Scenario C
- Spring constant [tex]\( k_C = 9 \frac{N}{m} \)[/tex]
- Compression [tex]\( x_C = 0.6 \, m \)[/tex]

[tex]\[ U_C = \frac{1}{2} k_C x_C^2 \\ U_C = \frac{1}{2} \times 9 \times (0.6)^2 \\ U_C = \frac{1}{2} \times 9 \times 0.36 \\ U_C = \frac{9 \times 0.36}{2} \\ U_C = 1.620 \, \text{J} \][/tex]

### Scenario D
- Spring constant [tex]\( k_D = 12 \frac{N}{m} \)[/tex]
- Compression [tex]\( x_D = 0.4 \, m \)[/tex]

[tex]\[ U_D = \frac{1}{2} k_D x_D^2 \\ U_D = \frac{1}{2} \times 12 \times (0.4)^2 \\ U_D = \frac{1}{2} \times 12 \times 0.16 \\ U_D = \frac{12 \times 0.16}{2} \\ U_D = 0.960 \, \text{J} \][/tex]

### Comparison
Now we have the calculated elastic potential energies for each scenario:
- [tex]\( U_A = 1.5 \, \text{J} \)[/tex]
- [tex]\( U_B = 1.920 \, \text{J} \)[/tex]
- [tex]\( U_C = 1.620 \, \text{J} \)[/tex]
- [tex]\( U_D = 0.960 \, \text{J} \)[/tex]

The highest value among these elastic potential energies is [tex]\( 1.920 \, \text{J} \)[/tex], which comes from Scenario B.

Therefore, the scenario that generates the most elastic potential energy is:

Scenario B.