Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which terms from the given set can be the first term in a polynomial with a degree of 5 written in standard form, we need to check the degree of each term. The degree of a term in a polynomial is the sum of the exponents of all the variables in that term.
Let’s analyze each term:
1. [tex]\(-4x^3y^2\)[/tex]
- Degree of [tex]\(x\)[/tex] = 3
- Degree of [tex]\(y\)[/tex] = 2
- Total degree = 3 (from [tex]\(x\)[/tex]) + 2 (from [tex]\(y\)[/tex]) = 5
- This term has a degree of 5.
2. [tex]\(x^3\)[/tex]
- Degree of [tex]\(x\)[/tex] = 3
- There is no [tex]\(y\)[/tex] term.
- Total degree = 3
- This term has a degree of 3, which is not equal to 5.
3. [tex]\(8.4x^4y^2\)[/tex]
- Degree of [tex]\(x\)[/tex] = 4
- Degree of [tex]\(y\)[/tex] = 2
- Total degree = 4 (from [tex]\(x\)[/tex]) + 2 (from [tex]\(y\)[/tex]) = 6
- This term has a degree of 6, which is not equal to 5.
4. [tex]\(5x^4y\)[/tex]
- Degree of [tex]\(x\)[/tex] = 4
- Degree of [tex]\(y\)[/tex] = 1
- Total degree = 4 (from [tex]\(x\)[/tex]) + 1 (from [tex]\(y\)[/tex]) = 5
- This term has a degree of 5.
5. [tex]\(-xy^3\)[/tex]
- Degree of [tex]\(x\)[/tex] = 1
- Degree of [tex]\(y\)[/tex] = 3
- Total degree = 1 (from [tex]\(x\)[/tex]) + 3 (from [tex]\(y\)[/tex]) = 4
- This term has a degree of 4, which is not equal to 5.
6. [tex]\(\frac{-2x^4}{y}\)[/tex]
- We need to rewrite this term to see the degrees clearly: [tex]\(-2x^4y^{-1}\)[/tex]
- Degree of [tex]\(x\)[/tex] = 4
- Degree of [tex]\(y\)[/tex] = -1
- Total degree = 4 (from [tex]\(x\)[/tex]) + (-1) (from [tex]\(y\)[/tex]) = 3
- This term has a degree of 3, which is not equal to 5.
After evaluating all the terms, we find that the terms that have a degree of 5 are:
- [tex]\(-4x^3y^2\)[/tex]
- [tex]\(5x^4y\)[/tex]
Therefore, these two terms can be used as the first term to create a polynomial with a degree of 5 written in standard form.
Let’s analyze each term:
1. [tex]\(-4x^3y^2\)[/tex]
- Degree of [tex]\(x\)[/tex] = 3
- Degree of [tex]\(y\)[/tex] = 2
- Total degree = 3 (from [tex]\(x\)[/tex]) + 2 (from [tex]\(y\)[/tex]) = 5
- This term has a degree of 5.
2. [tex]\(x^3\)[/tex]
- Degree of [tex]\(x\)[/tex] = 3
- There is no [tex]\(y\)[/tex] term.
- Total degree = 3
- This term has a degree of 3, which is not equal to 5.
3. [tex]\(8.4x^4y^2\)[/tex]
- Degree of [tex]\(x\)[/tex] = 4
- Degree of [tex]\(y\)[/tex] = 2
- Total degree = 4 (from [tex]\(x\)[/tex]) + 2 (from [tex]\(y\)[/tex]) = 6
- This term has a degree of 6, which is not equal to 5.
4. [tex]\(5x^4y\)[/tex]
- Degree of [tex]\(x\)[/tex] = 4
- Degree of [tex]\(y\)[/tex] = 1
- Total degree = 4 (from [tex]\(x\)[/tex]) + 1 (from [tex]\(y\)[/tex]) = 5
- This term has a degree of 5.
5. [tex]\(-xy^3\)[/tex]
- Degree of [tex]\(x\)[/tex] = 1
- Degree of [tex]\(y\)[/tex] = 3
- Total degree = 1 (from [tex]\(x\)[/tex]) + 3 (from [tex]\(y\)[/tex]) = 4
- This term has a degree of 4, which is not equal to 5.
6. [tex]\(\frac{-2x^4}{y}\)[/tex]
- We need to rewrite this term to see the degrees clearly: [tex]\(-2x^4y^{-1}\)[/tex]
- Degree of [tex]\(x\)[/tex] = 4
- Degree of [tex]\(y\)[/tex] = -1
- Total degree = 4 (from [tex]\(x\)[/tex]) + (-1) (from [tex]\(y\)[/tex]) = 3
- This term has a degree of 3, which is not equal to 5.
After evaluating all the terms, we find that the terms that have a degree of 5 are:
- [tex]\(-4x^3y^2\)[/tex]
- [tex]\(5x^4y\)[/tex]
Therefore, these two terms can be used as the first term to create a polynomial with a degree of 5 written in standard form.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.