Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the horizontal asymptote of the function
[tex]\[ g(x) = \frac{x^3 - 5x^2 + x - 3}{x^2 - 13}, \][/tex]
we need to analyze the degrees of the polynomial in the numerator and the denominator.
1. Degree of the Numerator:
- The numerator is [tex]\( x^3 - 5x^2 + x - 3 \)[/tex].
- The highest power of [tex]\( x \)[/tex] in the numerator is [tex]\( x^3 \)[/tex], hence the degree of the numerator is 3.
2. Degree of the Denominator:
- The denominator is [tex]\( x^2 - 13 \)[/tex].
- The highest power of [tex]\( x \)[/tex] in the denominator is [tex]\( x^2 \)[/tex], hence the degree of the denominator is 2.
3. Comparison of Degrees:
- The degree of the numerator (3) is greater than the degree of the denominator (2).
4. Horizontal Asymptote Rules:
- When the degree of the numerator is greater than the degree of the denominator, the function does not have a horizontal asymptote. Instead, the function grows without bound as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex] or [tex]\( -\infty \)[/tex].
Based on this analysis, it is concluded that:
There is no horizontal asymptote for the function [tex]\( g(x) \)[/tex].
[tex]\[ g(x) = \frac{x^3 - 5x^2 + x - 3}{x^2 - 13}, \][/tex]
we need to analyze the degrees of the polynomial in the numerator and the denominator.
1. Degree of the Numerator:
- The numerator is [tex]\( x^3 - 5x^2 + x - 3 \)[/tex].
- The highest power of [tex]\( x \)[/tex] in the numerator is [tex]\( x^3 \)[/tex], hence the degree of the numerator is 3.
2. Degree of the Denominator:
- The denominator is [tex]\( x^2 - 13 \)[/tex].
- The highest power of [tex]\( x \)[/tex] in the denominator is [tex]\( x^2 \)[/tex], hence the degree of the denominator is 2.
3. Comparison of Degrees:
- The degree of the numerator (3) is greater than the degree of the denominator (2).
4. Horizontal Asymptote Rules:
- When the degree of the numerator is greater than the degree of the denominator, the function does not have a horizontal asymptote. Instead, the function grows without bound as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex] or [tex]\( -\infty \)[/tex].
Based on this analysis, it is concluded that:
There is no horizontal asymptote for the function [tex]\( g(x) \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.