Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the horizontal asymptote of the function
[tex]\[ g(x) = \frac{x^3 - 5x^2 + x - 3}{x^2 - 13}, \][/tex]
we need to analyze the degrees of the polynomial in the numerator and the denominator.
1. Degree of the Numerator:
- The numerator is [tex]\( x^3 - 5x^2 + x - 3 \)[/tex].
- The highest power of [tex]\( x \)[/tex] in the numerator is [tex]\( x^3 \)[/tex], hence the degree of the numerator is 3.
2. Degree of the Denominator:
- The denominator is [tex]\( x^2 - 13 \)[/tex].
- The highest power of [tex]\( x \)[/tex] in the denominator is [tex]\( x^2 \)[/tex], hence the degree of the denominator is 2.
3. Comparison of Degrees:
- The degree of the numerator (3) is greater than the degree of the denominator (2).
4. Horizontal Asymptote Rules:
- When the degree of the numerator is greater than the degree of the denominator, the function does not have a horizontal asymptote. Instead, the function grows without bound as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex] or [tex]\( -\infty \)[/tex].
Based on this analysis, it is concluded that:
There is no horizontal asymptote for the function [tex]\( g(x) \)[/tex].
[tex]\[ g(x) = \frac{x^3 - 5x^2 + x - 3}{x^2 - 13}, \][/tex]
we need to analyze the degrees of the polynomial in the numerator and the denominator.
1. Degree of the Numerator:
- The numerator is [tex]\( x^3 - 5x^2 + x - 3 \)[/tex].
- The highest power of [tex]\( x \)[/tex] in the numerator is [tex]\( x^3 \)[/tex], hence the degree of the numerator is 3.
2. Degree of the Denominator:
- The denominator is [tex]\( x^2 - 13 \)[/tex].
- The highest power of [tex]\( x \)[/tex] in the denominator is [tex]\( x^2 \)[/tex], hence the degree of the denominator is 2.
3. Comparison of Degrees:
- The degree of the numerator (3) is greater than the degree of the denominator (2).
4. Horizontal Asymptote Rules:
- When the degree of the numerator is greater than the degree of the denominator, the function does not have a horizontal asymptote. Instead, the function grows without bound as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex] or [tex]\( -\infty \)[/tex].
Based on this analysis, it is concluded that:
There is no horizontal asymptote for the function [tex]\( g(x) \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.