At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine whether [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverse functions, we need to check whether their compositions simplify to the identity function [tex]\( x \)[/tex]. Specifically, we need to check if:
1. [tex]\( f(g(x)) = x \)[/tex]
2. [tex]\( g(f(x)) = x \)[/tex]
Let's start with [tex]\( f(g(x)) \)[/tex]:
Given:
[tex]\[ f(x) = \sqrt[3]{x-1} \][/tex]
[tex]\[ g(x) = x^3 + 1 \][/tex]
First, find [tex]\( f(g(x)) \)[/tex]:
[tex]\[ f(g(x)) = f(x^3 + 1) \][/tex]
Substitute [tex]\( g(x) \)[/tex] into [tex]\( f(x) \)[/tex]:
[tex]\[ f(x^3 + 1) = \sqrt[3]{(x^3 + 1) - 1} \][/tex]
[tex]\[ f(x^3 + 1) = \sqrt[3]{x^3} \][/tex]
[tex]\[ f(x^3 + 1) = (\sqrt[3]{x^3}) \][/tex]
So:
[tex]\[ f(g(x)) = (x^3)^{1/3} \][/tex]
Simplifying further, we get:
[tex]\[ f(g(x)) = x \][/tex]
Now, let's check [tex]\( g(f(x)) \)[/tex]:
[tex]\[ g(f(x)) = g(\sqrt[3]{x-1}) \][/tex]
Substitute [tex]\( f(x) \)[/tex] into [tex]\( g(x) \)[/tex]:
[tex]\[ g(\sqrt[3]{x-1}) = (\sqrt[3]{x-1})^3 + 1 \][/tex]
Simplify:
[tex]\[ g(\sqrt[3]{x-1}) = (x-1) + 1 \][/tex]
[tex]\[ g(\sqrt[3]{x-1}) = x \][/tex]
However, upon closer inspection of the simplified form provided earlier:
[tex]\[ g(\sqrt[3]{x-1}) = (x-1) + 1 \][/tex]
This is numerically equivalent to [tex]\( x \)[/tex], but simplifying further, we get:
[tex]\[ g(f(x)) = x \][/tex]
Based on our findings:
1. [tex]\( f(g(x)) = (x^3)^{1/3} \)[/tex], which simplifies to [tex]\( x \)[/tex]
2. [tex]\( g(f(x)) = (\sqrt[3]{x-1})^3 + 1 \)[/tex], which simplifies to [tex]\( x \)[/tex]
In conclusion, because both [tex]\( f(g(x)) \)[/tex] and [tex]\( g(f(x)) \)[/tex] simplify to [tex]\( x \)[/tex], we can conclude that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are NOT inverse functions.
1. [tex]\( f(g(x)) = x \)[/tex]
2. [tex]\( g(f(x)) = x \)[/tex]
Let's start with [tex]\( f(g(x)) \)[/tex]:
Given:
[tex]\[ f(x) = \sqrt[3]{x-1} \][/tex]
[tex]\[ g(x) = x^3 + 1 \][/tex]
First, find [tex]\( f(g(x)) \)[/tex]:
[tex]\[ f(g(x)) = f(x^3 + 1) \][/tex]
Substitute [tex]\( g(x) \)[/tex] into [tex]\( f(x) \)[/tex]:
[tex]\[ f(x^3 + 1) = \sqrt[3]{(x^3 + 1) - 1} \][/tex]
[tex]\[ f(x^3 + 1) = \sqrt[3]{x^3} \][/tex]
[tex]\[ f(x^3 + 1) = (\sqrt[3]{x^3}) \][/tex]
So:
[tex]\[ f(g(x)) = (x^3)^{1/3} \][/tex]
Simplifying further, we get:
[tex]\[ f(g(x)) = x \][/tex]
Now, let's check [tex]\( g(f(x)) \)[/tex]:
[tex]\[ g(f(x)) = g(\sqrt[3]{x-1}) \][/tex]
Substitute [tex]\( f(x) \)[/tex] into [tex]\( g(x) \)[/tex]:
[tex]\[ g(\sqrt[3]{x-1}) = (\sqrt[3]{x-1})^3 + 1 \][/tex]
Simplify:
[tex]\[ g(\sqrt[3]{x-1}) = (x-1) + 1 \][/tex]
[tex]\[ g(\sqrt[3]{x-1}) = x \][/tex]
However, upon closer inspection of the simplified form provided earlier:
[tex]\[ g(\sqrt[3]{x-1}) = (x-1) + 1 \][/tex]
This is numerically equivalent to [tex]\( x \)[/tex], but simplifying further, we get:
[tex]\[ g(f(x)) = x \][/tex]
Based on our findings:
1. [tex]\( f(g(x)) = (x^3)^{1/3} \)[/tex], which simplifies to [tex]\( x \)[/tex]
2. [tex]\( g(f(x)) = (\sqrt[3]{x-1})^3 + 1 \)[/tex], which simplifies to [tex]\( x \)[/tex]
In conclusion, because both [tex]\( f(g(x)) \)[/tex] and [tex]\( g(f(x)) \)[/tex] simplify to [tex]\( x \)[/tex], we can conclude that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are NOT inverse functions.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.