Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Alright, let's work through the given function [tex]\( f(x) = \frac{x^2 - 6x + 8}{x + 2} \)[/tex].
1. Domain of the function:
To find the domain of the function, we need to determine where the denominator is zero because division by zero is undefined.
Set the denominator equal to zero:
[tex]\[ x + 2 = 0 \][/tex]
[tex]\[ x = -2 \][/tex]
So, the function [tex]\( f(x) \)[/tex] is undefined at [tex]\( x = -2 \)[/tex]. Therefore, the domain of the function in interval notation is:
[tex]\[ (-\infty, -2) \cup (-2, \infty) \][/tex]
2. X-intercepts:
To find the x-intercepts, we need to set the numerator equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x^2 - 6x + 8 = 0 \][/tex]
This is a quadratic equation, and solving it, we get:
[tex]\[ (x-2)(x-4) = 0 \][/tex]
[tex]\[ x = 2 \quad \text{and} \quad x = 4 \][/tex]
Therefore, the x-intercepts are:
[tex]\[ (2, 0) \quad \text{and} \quad (4, 0) \][/tex]
3. Y-intercept:
To find the y-intercept, we evaluate the function [tex]\( f(x) \)[/tex] at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \frac{0^2 - 6 \cdot 0 + 8}{0 + 2} = \frac{8}{2} = 4 \][/tex]
So, the y-intercept is:
[tex]\[ (0, 4) \][/tex]
Final Answers:
- The domain of the function is:
[tex]\[ (-\infty, -2) \cup (-2, \infty) \][/tex]
- The x-intercepts are:
[tex]\[ (2, 0) \quad \text{and} \quad (4, 0) \][/tex]
- The y-intercept is:
[tex]\[ (0, 4) \][/tex]
1. Domain of the function:
To find the domain of the function, we need to determine where the denominator is zero because division by zero is undefined.
Set the denominator equal to zero:
[tex]\[ x + 2 = 0 \][/tex]
[tex]\[ x = -2 \][/tex]
So, the function [tex]\( f(x) \)[/tex] is undefined at [tex]\( x = -2 \)[/tex]. Therefore, the domain of the function in interval notation is:
[tex]\[ (-\infty, -2) \cup (-2, \infty) \][/tex]
2. X-intercepts:
To find the x-intercepts, we need to set the numerator equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x^2 - 6x + 8 = 0 \][/tex]
This is a quadratic equation, and solving it, we get:
[tex]\[ (x-2)(x-4) = 0 \][/tex]
[tex]\[ x = 2 \quad \text{and} \quad x = 4 \][/tex]
Therefore, the x-intercepts are:
[tex]\[ (2, 0) \quad \text{and} \quad (4, 0) \][/tex]
3. Y-intercept:
To find the y-intercept, we evaluate the function [tex]\( f(x) \)[/tex] at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \frac{0^2 - 6 \cdot 0 + 8}{0 + 2} = \frac{8}{2} = 4 \][/tex]
So, the y-intercept is:
[tex]\[ (0, 4) \][/tex]
Final Answers:
- The domain of the function is:
[tex]\[ (-\infty, -2) \cup (-2, \infty) \][/tex]
- The x-intercepts are:
[tex]\[ (2, 0) \quad \text{and} \quad (4, 0) \][/tex]
- The y-intercept is:
[tex]\[ (0, 4) \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.