Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's tackle the problem step by step.
### PART A
#### Copy and complete the table
| | Mrs Ndoro | Mrs Kori | Miss Ndlovu |
|-------------------|-----------|----------|-------------|
| Bananas (kg) | 1.2 | 2.2 | 1.8 |
| Apples (kg) | 0.8 | 2.0 | 1.6 |
| Total Paid (\[tex]$) | 2.40 | 5.20 | 4.2 | The missing value for the total amount paid by Miss Ndlovu is \(4.2\). #### Define the variables Let: - \( x \) be the price per kilogram for Bananas. - \( y \) be the price per kilogram for Apples. #### Form separate equations using the information from each column Mrs Ndoro's Equation: \[ 1.2x + 0.8y = 2.40 \] Mrs Kori's Equation: \[ 2.2x + 2.0y = 5.20 \] Miss Ndlovu's Equation: \[ 1.8x + 1.6y = 4.2 \] ### PART B #### Solve for the unknown variables using the matrix method ##### Pulling out the matrix To solve the system of linear equations defined by Mrs Ndoro and Mrs Kori, we can write it in matrix form \( A \mathbf{x} = \mathbf{b} \). \[ A = \begin{pmatrix} 1.2 & 0.8 \\ 2.2 & 2.0 \end{pmatrix} \] \[ \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} \] \[ \mathbf{b} = \begin{pmatrix} 2.40 \\ 5.20 \end{pmatrix} \] ##### Finding the determinant of the drawn matrix To find \( x \) and \( y \), we first need to check that the determinant of \( A \) is non-zero. \[ \text{Det}(A) = \begin{vmatrix} 1.2 & 0.8 \\ 2.2 & 2.0 \end{vmatrix} = (1.2 \cdot 2.0) - (0.8 \cdot 2.2) \] \[ \text{Det}(A) = 2.4 - 1.76 = 0.64 \] Since the determinant is \( 0.64 \), which is not zero, we can proceed to solve the system using the inverse of \( A \). #### Solving the system The inverse of matrix \( A \) is given by \[ A^{-1} = \frac{1}{\text{Det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] where \( a = 1.2 \), \( b = 0.8 \), \( c = 2.2 \), and \( d = 2.0 \). \[ A^{-1} = \frac{1}{0.64} \begin{pmatrix} 2.0 & -0.8 \\ -2.2 & 1.2 \end{pmatrix} = \begin{pmatrix} 3.125 & -1.25 \\ -3.4375 & 1.875 \end{pmatrix} \] Now we can find \( \mathbf{x} \) by multiplying \( A^{-1} \) with \( \mathbf{b} \): \[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} 3.125 & -1.25 \\ -3.4375 & 1.875 \end{pmatrix} \begin{pmatrix} 2.40 \\ 5.20 \end{pmatrix} \] \[ \mathbf{x} = \begin{pmatrix} (3.125 \cdot 2.40) + (-1.25 \cdot 5.20) \\ (-3.4375 \cdot 2.40) + (1.875 \cdot 5.20) \end{pmatrix} \] \[ \mathbf{x} = \begin{pmatrix} 7.5 - 6.5 \\ -8.25 + 9.75 \end{pmatrix} \] \[ \mathbf{x} = \begin{pmatrix} 1.00 \\ 1.50 \end{pmatrix} \] Thus, the price per kilogram for Bananas is \( \$[/tex]1.00 \) and the price per kilogram for Apples is [tex]\( \$1.50 \)[/tex].
Finally, we use these prices to calculate the total amount paid by Miss Ndlovu:
[tex]\[ 1.8x + 1.6y = 1.8 \cdot 1.00 + 1.6 \cdot 1.50 = 1.8 + 2.4 = 4.2 \][/tex]
So, Miss Ndlovu paid [tex]\( \$4.20 \)[/tex] for her fruits.
### PART A
#### Copy and complete the table
| | Mrs Ndoro | Mrs Kori | Miss Ndlovu |
|-------------------|-----------|----------|-------------|
| Bananas (kg) | 1.2 | 2.2 | 1.8 |
| Apples (kg) | 0.8 | 2.0 | 1.6 |
| Total Paid (\[tex]$) | 2.40 | 5.20 | 4.2 | The missing value for the total amount paid by Miss Ndlovu is \(4.2\). #### Define the variables Let: - \( x \) be the price per kilogram for Bananas. - \( y \) be the price per kilogram for Apples. #### Form separate equations using the information from each column Mrs Ndoro's Equation: \[ 1.2x + 0.8y = 2.40 \] Mrs Kori's Equation: \[ 2.2x + 2.0y = 5.20 \] Miss Ndlovu's Equation: \[ 1.8x + 1.6y = 4.2 \] ### PART B #### Solve for the unknown variables using the matrix method ##### Pulling out the matrix To solve the system of linear equations defined by Mrs Ndoro and Mrs Kori, we can write it in matrix form \( A \mathbf{x} = \mathbf{b} \). \[ A = \begin{pmatrix} 1.2 & 0.8 \\ 2.2 & 2.0 \end{pmatrix} \] \[ \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} \] \[ \mathbf{b} = \begin{pmatrix} 2.40 \\ 5.20 \end{pmatrix} \] ##### Finding the determinant of the drawn matrix To find \( x \) and \( y \), we first need to check that the determinant of \( A \) is non-zero. \[ \text{Det}(A) = \begin{vmatrix} 1.2 & 0.8 \\ 2.2 & 2.0 \end{vmatrix} = (1.2 \cdot 2.0) - (0.8 \cdot 2.2) \] \[ \text{Det}(A) = 2.4 - 1.76 = 0.64 \] Since the determinant is \( 0.64 \), which is not zero, we can proceed to solve the system using the inverse of \( A \). #### Solving the system The inverse of matrix \( A \) is given by \[ A^{-1} = \frac{1}{\text{Det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] where \( a = 1.2 \), \( b = 0.8 \), \( c = 2.2 \), and \( d = 2.0 \). \[ A^{-1} = \frac{1}{0.64} \begin{pmatrix} 2.0 & -0.8 \\ -2.2 & 1.2 \end{pmatrix} = \begin{pmatrix} 3.125 & -1.25 \\ -3.4375 & 1.875 \end{pmatrix} \] Now we can find \( \mathbf{x} \) by multiplying \( A^{-1} \) with \( \mathbf{b} \): \[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} 3.125 & -1.25 \\ -3.4375 & 1.875 \end{pmatrix} \begin{pmatrix} 2.40 \\ 5.20 \end{pmatrix} \] \[ \mathbf{x} = \begin{pmatrix} (3.125 \cdot 2.40) + (-1.25 \cdot 5.20) \\ (-3.4375 \cdot 2.40) + (1.875 \cdot 5.20) \end{pmatrix} \] \[ \mathbf{x} = \begin{pmatrix} 7.5 - 6.5 \\ -8.25 + 9.75 \end{pmatrix} \] \[ \mathbf{x} = \begin{pmatrix} 1.00 \\ 1.50 \end{pmatrix} \] Thus, the price per kilogram for Bananas is \( \$[/tex]1.00 \) and the price per kilogram for Apples is [tex]\( \$1.50 \)[/tex].
Finally, we use these prices to calculate the total amount paid by Miss Ndlovu:
[tex]\[ 1.8x + 1.6y = 1.8 \cdot 1.00 + 1.6 \cdot 1.50 = 1.8 + 2.4 = 4.2 \][/tex]
So, Miss Ndlovu paid [tex]\( \$4.20 \)[/tex] for her fruits.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.