Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's go through the next steps in detail after the initial steps provided:
1. Draw an altitude from [tex]\(B\)[/tex] to segment [tex]\(\overline{AC}\)[/tex]. Label the point where the altitude and segment [tex]\(\overline{AC}\)[/tex] intersect as [tex]\(D\)[/tex]. The altitude forms two right triangles within [tex]\(\triangle ABC\)[/tex].
2. By the Pythagorean theorem:
- For [tex]\(\triangle ABD\)[/tex]: [tex]\(c^2 = h^2 + x^2\)[/tex]
- For [tex]\(\triangle BDC\)[/tex]: [tex]\(a^2 = h^2 + (b - x)^2\)[/tex]
3. Expanding the binomial squared:
[tex]\[ a^2 = h^2 + b^2 - 2bx + x^2 \][/tex]
4. Subtract the equation for [tex]\(c^2\)[/tex] from [tex]\(a^2\)[/tex]:
[tex]\[ a^2 - c^2 = (h^2 + b^2 - 2bx + x^2) - (h^2 + x^2) \][/tex]
Simplify:
[tex]\[ a^2 - c^2 = b^2 - 2bx \][/tex]
5. Subtract [tex]\(b^2\)[/tex] from both sides of the equation:
[tex]\[ a^2 - b^2 - c^2 = -2bx \][/tex]
6. Add [tex]\(2bx\)[/tex] to both sides of the equation:
[tex]\[ a^2 - b^2 - c^2 + 2bx = 0 \][/tex]
Simplify:
[tex]\[ a^2 - c^2 + 2bx = b^2 \][/tex]
7. Add [tex]\(c^2\)[/tex] to both sides of the equation:
[tex]\[ a^2 = b^2 + c^2 - 2bx \][/tex]
To continue the proof and simplify this expression further, consider the relationship between [tex]\(x\)[/tex] and [tex]\(\cos(A)\)[/tex]:
8. By construction, [tex]\(x = c \cos(A)\)[/tex]. Substitute this into the equation:
[tex]\[ a^2 = b^2 + c^2 - 2b \cdot (c \cos(A)) \][/tex]
9. Therefore, the proof of the law of cosines is completed:
[tex]\[ a^2 = b^2 + c^2 - 2bc \cos(A) \][/tex]
And thus, we have successfully proven the law of cosines for a triangle with any angles, including acute angles.
1. Draw an altitude from [tex]\(B\)[/tex] to segment [tex]\(\overline{AC}\)[/tex]. Label the point where the altitude and segment [tex]\(\overline{AC}\)[/tex] intersect as [tex]\(D\)[/tex]. The altitude forms two right triangles within [tex]\(\triangle ABC\)[/tex].
2. By the Pythagorean theorem:
- For [tex]\(\triangle ABD\)[/tex]: [tex]\(c^2 = h^2 + x^2\)[/tex]
- For [tex]\(\triangle BDC\)[/tex]: [tex]\(a^2 = h^2 + (b - x)^2\)[/tex]
3. Expanding the binomial squared:
[tex]\[ a^2 = h^2 + b^2 - 2bx + x^2 \][/tex]
4. Subtract the equation for [tex]\(c^2\)[/tex] from [tex]\(a^2\)[/tex]:
[tex]\[ a^2 - c^2 = (h^2 + b^2 - 2bx + x^2) - (h^2 + x^2) \][/tex]
Simplify:
[tex]\[ a^2 - c^2 = b^2 - 2bx \][/tex]
5. Subtract [tex]\(b^2\)[/tex] from both sides of the equation:
[tex]\[ a^2 - b^2 - c^2 = -2bx \][/tex]
6. Add [tex]\(2bx\)[/tex] to both sides of the equation:
[tex]\[ a^2 - b^2 - c^2 + 2bx = 0 \][/tex]
Simplify:
[tex]\[ a^2 - c^2 + 2bx = b^2 \][/tex]
7. Add [tex]\(c^2\)[/tex] to both sides of the equation:
[tex]\[ a^2 = b^2 + c^2 - 2bx \][/tex]
To continue the proof and simplify this expression further, consider the relationship between [tex]\(x\)[/tex] and [tex]\(\cos(A)\)[/tex]:
8. By construction, [tex]\(x = c \cos(A)\)[/tex]. Substitute this into the equation:
[tex]\[ a^2 = b^2 + c^2 - 2b \cdot (c \cos(A)) \][/tex]
9. Therefore, the proof of the law of cosines is completed:
[tex]\[ a^2 = b^2 + c^2 - 2bc \cos(A) \][/tex]
And thus, we have successfully proven the law of cosines for a triangle with any angles, including acute angles.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.