Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine how many text messages separate the lowest 15% from the highest 85% in a sampling distribution of 144 teenagers, we need to follow these steps carefully:
1. Identify the given parameters:
- Population mean (μ): 312
- Population standard deviation (σ): 125
- Sample size (n): 144
- Percentile to find the threshold for: 15%
2. Find the corresponding z-score for the 15th percentile using the z-table.
Looking up the z-table, we see that the z-score for the 15th percentile is approximately -1.04.
3. Calculate the standard deviation of the sampling distribution (standard error):
[tex]\[ \text{Standard Error} = \frac{\sigma}{\sqrt{n}} = \frac{125}{\sqrt{144}} = \frac{125}{12} \approx 10.42 \][/tex]
4. Calculate the value (x) that separates the lowest 15% using the z-score formula:
[tex]\[ x = \mu + z \cdot (\text{Standard Error}) \][/tex]
Replacing the known values we get:
[tex]\[ x = 312 + (-1.04) \cdot 10.42 \approx 312 - 10.83 \approx 301 \][/tex]
Therefore, the z-score and the corresponding number of text messages that separate the lowest 15% are:
[tex]\[ \begin{array}{l} z \text {-score }=-1.04 \\ \bar{x}=301 \text { text messages } \end{array} \][/tex]
1. Identify the given parameters:
- Population mean (μ): 312
- Population standard deviation (σ): 125
- Sample size (n): 144
- Percentile to find the threshold for: 15%
2. Find the corresponding z-score for the 15th percentile using the z-table.
Looking up the z-table, we see that the z-score for the 15th percentile is approximately -1.04.
3. Calculate the standard deviation of the sampling distribution (standard error):
[tex]\[ \text{Standard Error} = \frac{\sigma}{\sqrt{n}} = \frac{125}{\sqrt{144}} = \frac{125}{12} \approx 10.42 \][/tex]
4. Calculate the value (x) that separates the lowest 15% using the z-score formula:
[tex]\[ x = \mu + z \cdot (\text{Standard Error}) \][/tex]
Replacing the known values we get:
[tex]\[ x = 312 + (-1.04) \cdot 10.42 \approx 312 - 10.83 \approx 301 \][/tex]
Therefore, the z-score and the corresponding number of text messages that separate the lowest 15% are:
[tex]\[ \begin{array}{l} z \text {-score }=-1.04 \\ \bar{x}=301 \text { text messages } \end{array} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.