Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the domain of the function [tex]\( f(x) = \frac{5x + 3}{x} \)[/tex], we need to identify all possible values of [tex]\( x \)[/tex] for which the function is defined.
1. Domain:
Since the function [tex]\( f(x) = \frac{5x + 3}{x} \)[/tex] involves division by [tex]\( x \)[/tex], [tex]\( x \)[/tex] must not be zero because division by zero is undefined. Therefore, the domain of the function is all real numbers except [tex]\( x = 0 \)[/tex].
Hence, the domain in interval notation is:
[tex]\[ (-\infty, 0) \cup (0, \infty) \][/tex]
2. [tex]\(x\)[/tex]-intercept(s):
To find the [tex]\( x \)[/tex]-intercept(s), we need to set the function [tex]\( f(x) \)[/tex] equal to zero and solve for [tex]\( x \)[/tex].
[tex]\[ f(x) = \frac{5x + 3}{x} = 0 \][/tex]
The function [tex]\( f(x) \)[/tex] is equal to zero when the numerator is zero, because for a fraction to be zero, its numerator must be zero (and the denominator must be non-zero).
[tex]\[ 5x + 3 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 5x = -3 \][/tex]
[tex]\[ x = -\frac{3}{5} \][/tex]
So, the [tex]\( x \)[/tex]-intercept is:
[tex]\[ \left( -\frac{3}{5}, 0 \right) \][/tex]
Final Answer:
- The domain of the function is: [tex]\((- \infty, 0) \cup (0, \infty)\)[/tex]
- The [tex]\( x \)[/tex]-intercept is: [tex]\( \left( -\frac{3}{5}, 0 \right) \)[/tex]
Since I must select the correct choice:
A. The [tex]\( x \)[/tex]-intercept(s) is/are [tex]\( \left( -\frac{3}{5}, 0 \right) \)[/tex]
Thus, ensure you select option A and fill in the intercept as [tex]\( \left( -\frac{3}{5}, 0 \right) \)[/tex].
1. Domain:
Since the function [tex]\( f(x) = \frac{5x + 3}{x} \)[/tex] involves division by [tex]\( x \)[/tex], [tex]\( x \)[/tex] must not be zero because division by zero is undefined. Therefore, the domain of the function is all real numbers except [tex]\( x = 0 \)[/tex].
Hence, the domain in interval notation is:
[tex]\[ (-\infty, 0) \cup (0, \infty) \][/tex]
2. [tex]\(x\)[/tex]-intercept(s):
To find the [tex]\( x \)[/tex]-intercept(s), we need to set the function [tex]\( f(x) \)[/tex] equal to zero and solve for [tex]\( x \)[/tex].
[tex]\[ f(x) = \frac{5x + 3}{x} = 0 \][/tex]
The function [tex]\( f(x) \)[/tex] is equal to zero when the numerator is zero, because for a fraction to be zero, its numerator must be zero (and the denominator must be non-zero).
[tex]\[ 5x + 3 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 5x = -3 \][/tex]
[tex]\[ x = -\frac{3}{5} \][/tex]
So, the [tex]\( x \)[/tex]-intercept is:
[tex]\[ \left( -\frac{3}{5}, 0 \right) \][/tex]
Final Answer:
- The domain of the function is: [tex]\((- \infty, 0) \cup (0, \infty)\)[/tex]
- The [tex]\( x \)[/tex]-intercept is: [tex]\( \left( -\frac{3}{5}, 0 \right) \)[/tex]
Since I must select the correct choice:
A. The [tex]\( x \)[/tex]-intercept(s) is/are [tex]\( \left( -\frac{3}{5}, 0 \right) \)[/tex]
Thus, ensure you select option A and fill in the intercept as [tex]\( \left( -\frac{3}{5}, 0 \right) \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.