Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

An arc on a circle measures [tex]$250^{\circ}$[/tex]. Within which range is the radian measure of the central angle?

A. [tex]0 \text{ to } \frac{\pi}{2}[/tex] radians
B. [tex]\frac{\pi}{2} \text{ to } \pi[/tex] radians
C. [tex]\pi \text{ to } \frac{3 \pi}{2}[/tex] radians
D. [tex]\frac{3 \pi}{2} \text{ to } 2 \pi[/tex] radians

Sagot :

First, we need to convert the given angle from degrees to radians. The formula to convert degrees to radians is:
[tex]\[ \text{radians} = \text{degrees} \times \left(\frac{\pi}{180}\right) \][/tex]

Given the angle:
[tex]\[ 250^\circ \][/tex]

Let's convert this to radians:
[tex]\[ 250^\circ \times \left(\frac{\pi}{180}\right) = \frac{250\pi}{180} = \frac{25\pi}{18} \][/tex]

Now, calculate the approximate value:
[tex]\[ \frac{25\pi}{18} \approx 4.363 \text{ radians} \][/tex]

Next, we need to determine within which range this radian measure falls.

We have four specified ranges:
1. [tex]\( 0 \text{ to } \frac{\pi}{2} \)[/tex] radians
2. [tex]\( \frac{\pi}{2} \text{ to } \pi \)[/tex] radians
3. [tex]\( \pi \text{ to } \frac{3\pi}{2} \)[/tex] radians
4. [tex]\( \frac{3\pi}{2} \text{ to } 2\pi \)[/tex] radians

Let's evaluate these ranges using their approximations:
1. [tex]\( 0 \text{ to } \frac{\pi}{2} \)[/tex]: [tex]\( 0 \text{ to } 1.5708 \)[/tex]
2. [tex]\( \frac{\pi}{2} \text{ to } \pi \)[/tex]: [tex]\( 1.5708 \text{ to } 3.1416 \)[/tex]
3. [tex]\( \pi \text{ to } \frac{3\pi}{2} \)[/tex]: [tex]\( 3.1416 \text{ to } 4.7124 \)[/tex]
4. [tex]\( \frac{3\pi}{2} \text{ to } 2\pi \)[/tex]: [tex]\( 4.7124 \text{ to } 6.2832 \)[/tex]

The radian measure [tex]\( 4.363 \)[/tex] falls into the third range:
[tex]\[ \pi \text{ ranges to } \frac{3\pi}{2} \approx 3.1416 \text{ to } 4.7124 \][/tex]

Thus, the central angle of 250 degrees in radians is approximately 4.363, placing it within the range [tex]\( \pi \text{ to } \frac{3\pi}{2} \)[/tex] radians.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.