At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the correct formula for the volume of a pyramid with a square base and a height equal to half the length of the side, we can follow these steps:
1. Identify the parameters:
- Let [tex]\( s \)[/tex] be the side length of the square base.
- The height of the pyramid is given as [tex]\( \frac{1}{2} \)[/tex] of the side length, so height [tex]\( h = \frac{s}{2} \)[/tex].
2. Recall the formula for the volume of a pyramid:
[tex]\[ V = \frac{1}{3} \times (\text{Base Area}) \times (\text{Height}) \][/tex]
3. Calculate the base area:
- The base is a square with side length [tex]\( s \)[/tex], so the area of the base [tex]\( B \)[/tex] is:
[tex]\[ B = s^2 \][/tex]
4. Substitute the base area and height into the volume formula:
[tex]\[ V = \frac{1}{3} \times s^2 \times \frac{s}{2} \][/tex]
5. Simplify the expression:
[tex]\[ V = \frac{1}{3} \times s^2 \times \frac{s}{2} = \frac{1}{3} \times \frac{1}{2} \times s^3 = \frac{1}{6} s^3 \][/tex]
Therefore, the correct formula for the volume of the pyramid is:
[tex]\[ V = \frac{1}{6} s^3 \][/tex]
Thus, the correct answer is [tex]\( \boxed{B} \)[/tex].
1. Identify the parameters:
- Let [tex]\( s \)[/tex] be the side length of the square base.
- The height of the pyramid is given as [tex]\( \frac{1}{2} \)[/tex] of the side length, so height [tex]\( h = \frac{s}{2} \)[/tex].
2. Recall the formula for the volume of a pyramid:
[tex]\[ V = \frac{1}{3} \times (\text{Base Area}) \times (\text{Height}) \][/tex]
3. Calculate the base area:
- The base is a square with side length [tex]\( s \)[/tex], so the area of the base [tex]\( B \)[/tex] is:
[tex]\[ B = s^2 \][/tex]
4. Substitute the base area and height into the volume formula:
[tex]\[ V = \frac{1}{3} \times s^2 \times \frac{s}{2} \][/tex]
5. Simplify the expression:
[tex]\[ V = \frac{1}{3} \times s^2 \times \frac{s}{2} = \frac{1}{3} \times \frac{1}{2} \times s^3 = \frac{1}{6} s^3 \][/tex]
Therefore, the correct formula for the volume of the pyramid is:
[tex]\[ V = \frac{1}{6} s^3 \][/tex]
Thus, the correct answer is [tex]\( \boxed{B} \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.