Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Gas Laws Fact Sheet

\begin{tabular}{|c|c|}
\hline
Ideal gas law & [tex]$PV = nRT$[/tex] \\
\hline
Ideal gas constant & \begin{tabular}{l}
[tex]$R = 8.314 \frac{L \cdot kPa}{mol \cdot K}$[/tex] \\
or \\
[tex]$R = 0.0821 \frac{L \cdot atm}{mol \cdot K}$[/tex]
\end{tabular} \\
\hline
Standard atmospheric pressure & [tex]$1 \, atm = 101.3 \, kPa$[/tex] \\
\hline
Celsius to Kelvin conversion & [tex]$K = ^\circ C + 273.15$[/tex] \\
\hline
\end{tabular}

When carbon dioxide dissolves in water, it sometimes reacts with water to form carbonic acid as shown in the balanced equation:
[tex]\[
CO_2 + H_2O \rightarrow H_2CO_3
\][/tex]

If 495 milliliters of carbon dioxide at [tex]$25^{\circ} C$[/tex] and 101.3 kilopascals reacts with excess water, what is the theoretical yield of carbonic acid?

Use the periodic table and the ideal gas law.

A. [tex]$0.889 \, g$[/tex] \\
B. [tex]$1.10 \, g$[/tex] \\
C. [tex]$1.27 \, g$[/tex] \\
D. [tex]$2.029 \, g$[/tex]


Sagot :

To calculate the theoretical yield of carbonic acid ( [tex]\( H_2CO_3 \)[/tex] ) formed when [tex]\( 495 \)[/tex] milliliters of carbon dioxide ([tex]\( CO_2 \)[/tex]) reacts with excess water under the given conditions, we can use the Ideal Gas Law, [tex]\( PV = nRT \)[/tex]. Let's walk through the necessary steps:

1. Convert the Volume to Liters:

Given volume of [tex]\( CO_2 \)[/tex] is [tex]\( 495 \)[/tex] milliliters.
[tex]\[ 495 \text{ milliliters} = 495 \times \frac{1 \text{ liter}}{1000 \text{ milliliters}} = 0.495 \text{ liters} \][/tex]

2. Convert the Temperature to Kelvin:

Given temperature is [tex]\( 25^{\circ} C \)[/tex].
[tex]\[ 25^{\circ} C + 273.15 = 298.15 \text{ K} \][/tex]

3. Use the Ideal Gas Law to Find the Number of Moles ([tex]\( n \)[/tex]) of [tex]\( CO_2 \)[/tex]:

Given pressure [tex]\( P = 101.3 \)[/tex] kilopascals,
Ideal Gas constant [tex]\( R = 8.314 \frac{L kPa}{mol K} \)[/tex],
Temperature [tex]\( T = 298.15 \text{ K} \)[/tex],
Volume [tex]\( V = 0.495 \text{ liters} \)[/tex].

Rearranging the Ideal Gas Law to solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substitute the given values:
[tex]\[ n = \frac{101.3 \text{ kPa} \times 0.495 \text{ liters}}{8.314 \frac{L kPa}{mol K} \times 298.15 \text{ K}} \][/tex]
[tex]\[ n \approx 0.02023 \text{ moles} \][/tex]

4. Calculate the Theoretical Yield of [tex]\( H_2CO_3 \)[/tex]:

According to the balanced chemical equation:
[tex]\[ CO_2 + H_2O \rightarrow H_2CO_3 \][/tex]
1 mole of [tex]\( CO_2 \)[/tex] produces 1 mole of [tex]\( H_2CO_3 \)[/tex]. Thus, moles of [tex]\( H_2CO_3 \)[/tex] formed will be the same as moles of [tex]\( CO_2 \)[/tex], which is [tex]\( 0.02023 \text{ moles} \)[/tex].

5. Calculate the Mass of [tex]\( H_2CO_3 \)[/tex]:

Molar mass of [tex]\( H_2CO_3 \)[/tex] is calculated as follows:
[tex]\[ Molar \, mass \, of \, H_2CO_3 = 2 \times 1 (H) + 12 (C) + 3 \times 16 (O) = 62 \, g/mol \][/tex]
Mass of [tex]\( H_2CO_3 \)[/tex] formed:
[tex]\[ \text{Mass} = \text{moles} \times \text{molar mass} \][/tex]
[tex]\[ \text{Mass} = 0.02023 \text{ moles} \times 62 \, \text{g/mol} \approx 1.254 \, \text{g} \][/tex]

To match the multiple-choice answers:
Option A: [tex]\( 0.889 \, g \)[/tex]
Option B: [tex]\( 1.10 \, g \)[/tex]
Option C: [tex]\( 1.27 \, g \)[/tex]
Option D: [tex]\( 2.029 \, g \)[/tex]

Since [tex]\( 1.254 \)[/tex] grams is closest to [tex]\( 1.27 \)[/tex], the correct answer is:
[tex]\[ \boxed{1.27 \, g} \][/tex]