Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To calculate the theoretical yield of carbonic acid ( [tex]\( H_2CO_3 \)[/tex] ) formed when [tex]\( 495 \)[/tex] milliliters of carbon dioxide ([tex]\( CO_2 \)[/tex]) reacts with excess water under the given conditions, we can use the Ideal Gas Law, [tex]\( PV = nRT \)[/tex]. Let's walk through the necessary steps:
1. Convert the Volume to Liters:
Given volume of [tex]\( CO_2 \)[/tex] is [tex]\( 495 \)[/tex] milliliters.
[tex]\[ 495 \text{ milliliters} = 495 \times \frac{1 \text{ liter}}{1000 \text{ milliliters}} = 0.495 \text{ liters} \][/tex]
2. Convert the Temperature to Kelvin:
Given temperature is [tex]\( 25^{\circ} C \)[/tex].
[tex]\[ 25^{\circ} C + 273.15 = 298.15 \text{ K} \][/tex]
3. Use the Ideal Gas Law to Find the Number of Moles ([tex]\( n \)[/tex]) of [tex]\( CO_2 \)[/tex]:
Given pressure [tex]\( P = 101.3 \)[/tex] kilopascals,
Ideal Gas constant [tex]\( R = 8.314 \frac{L kPa}{mol K} \)[/tex],
Temperature [tex]\( T = 298.15 \text{ K} \)[/tex],
Volume [tex]\( V = 0.495 \text{ liters} \)[/tex].
Rearranging the Ideal Gas Law to solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substitute the given values:
[tex]\[ n = \frac{101.3 \text{ kPa} \times 0.495 \text{ liters}}{8.314 \frac{L kPa}{mol K} \times 298.15 \text{ K}} \][/tex]
[tex]\[ n \approx 0.02023 \text{ moles} \][/tex]
4. Calculate the Theoretical Yield of [tex]\( H_2CO_3 \)[/tex]:
According to the balanced chemical equation:
[tex]\[ CO_2 + H_2O \rightarrow H_2CO_3 \][/tex]
1 mole of [tex]\( CO_2 \)[/tex] produces 1 mole of [tex]\( H_2CO_3 \)[/tex]. Thus, moles of [tex]\( H_2CO_3 \)[/tex] formed will be the same as moles of [tex]\( CO_2 \)[/tex], which is [tex]\( 0.02023 \text{ moles} \)[/tex].
5. Calculate the Mass of [tex]\( H_2CO_3 \)[/tex]:
Molar mass of [tex]\( H_2CO_3 \)[/tex] is calculated as follows:
[tex]\[ Molar \, mass \, of \, H_2CO_3 = 2 \times 1 (H) + 12 (C) + 3 \times 16 (O) = 62 \, g/mol \][/tex]
Mass of [tex]\( H_2CO_3 \)[/tex] formed:
[tex]\[ \text{Mass} = \text{moles} \times \text{molar mass} \][/tex]
[tex]\[ \text{Mass} = 0.02023 \text{ moles} \times 62 \, \text{g/mol} \approx 1.254 \, \text{g} \][/tex]
To match the multiple-choice answers:
Option A: [tex]\( 0.889 \, g \)[/tex]
Option B: [tex]\( 1.10 \, g \)[/tex]
Option C: [tex]\( 1.27 \, g \)[/tex]
Option D: [tex]\( 2.029 \, g \)[/tex]
Since [tex]\( 1.254 \)[/tex] grams is closest to [tex]\( 1.27 \)[/tex], the correct answer is:
[tex]\[ \boxed{1.27 \, g} \][/tex]
1. Convert the Volume to Liters:
Given volume of [tex]\( CO_2 \)[/tex] is [tex]\( 495 \)[/tex] milliliters.
[tex]\[ 495 \text{ milliliters} = 495 \times \frac{1 \text{ liter}}{1000 \text{ milliliters}} = 0.495 \text{ liters} \][/tex]
2. Convert the Temperature to Kelvin:
Given temperature is [tex]\( 25^{\circ} C \)[/tex].
[tex]\[ 25^{\circ} C + 273.15 = 298.15 \text{ K} \][/tex]
3. Use the Ideal Gas Law to Find the Number of Moles ([tex]\( n \)[/tex]) of [tex]\( CO_2 \)[/tex]:
Given pressure [tex]\( P = 101.3 \)[/tex] kilopascals,
Ideal Gas constant [tex]\( R = 8.314 \frac{L kPa}{mol K} \)[/tex],
Temperature [tex]\( T = 298.15 \text{ K} \)[/tex],
Volume [tex]\( V = 0.495 \text{ liters} \)[/tex].
Rearranging the Ideal Gas Law to solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substitute the given values:
[tex]\[ n = \frac{101.3 \text{ kPa} \times 0.495 \text{ liters}}{8.314 \frac{L kPa}{mol K} \times 298.15 \text{ K}} \][/tex]
[tex]\[ n \approx 0.02023 \text{ moles} \][/tex]
4. Calculate the Theoretical Yield of [tex]\( H_2CO_3 \)[/tex]:
According to the balanced chemical equation:
[tex]\[ CO_2 + H_2O \rightarrow H_2CO_3 \][/tex]
1 mole of [tex]\( CO_2 \)[/tex] produces 1 mole of [tex]\( H_2CO_3 \)[/tex]. Thus, moles of [tex]\( H_2CO_3 \)[/tex] formed will be the same as moles of [tex]\( CO_2 \)[/tex], which is [tex]\( 0.02023 \text{ moles} \)[/tex].
5. Calculate the Mass of [tex]\( H_2CO_3 \)[/tex]:
Molar mass of [tex]\( H_2CO_3 \)[/tex] is calculated as follows:
[tex]\[ Molar \, mass \, of \, H_2CO_3 = 2 \times 1 (H) + 12 (C) + 3 \times 16 (O) = 62 \, g/mol \][/tex]
Mass of [tex]\( H_2CO_3 \)[/tex] formed:
[tex]\[ \text{Mass} = \text{moles} \times \text{molar mass} \][/tex]
[tex]\[ \text{Mass} = 0.02023 \text{ moles} \times 62 \, \text{g/mol} \approx 1.254 \, \text{g} \][/tex]
To match the multiple-choice answers:
Option A: [tex]\( 0.889 \, g \)[/tex]
Option B: [tex]\( 1.10 \, g \)[/tex]
Option C: [tex]\( 1.27 \, g \)[/tex]
Option D: [tex]\( 2.029 \, g \)[/tex]
Since [tex]\( 1.254 \)[/tex] grams is closest to [tex]\( 1.27 \)[/tex], the correct answer is:
[tex]\[ \boxed{1.27 \, g} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.