Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To complete the proof that in a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle, the hypotenuse is [tex]\(\sqrt{2}\)[/tex] times the length of each leg, we can follow the steps as outlined below:
Given:
- Triangle [tex]\(XYZ\)[/tex] is an isosceles right triangle, also known as a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle.
- Let the legs of the triangle be [tex]\(a\)[/tex] and [tex]\(a\)[/tex], and the hypotenuse be [tex]\(c\)[/tex].
Step-by-Step Solution:
1. Initial Equation:
We start by using the Pythagorean theorem for the right triangle [tex]\(XYZ\)[/tex]:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
Since [tex]\(XYZ\)[/tex] is an isosceles right triangle, the lengths of the legs are equal, so [tex]\(a = b\)[/tex]. Thus, the equation becomes:
[tex]\[ a^2 + a^2 = c^2 \][/tex]
2. Combine Like Terms:
By combining the terms on the left side of the equation, we get:
[tex]\[ 2a^2 = c^2 \][/tex]
3. Taking the Square Root:
To find the length of the hypotenuse [tex]\(c\)[/tex], we need to determine the principal square root of both sides of the equation:
[tex]\[ c = \sqrt{2a^2} \][/tex]
4. Simplify the Square Root:
Simplifying the square root expression, we can separate the constant factor and the variable:
[tex]\[ c = \sqrt{2} \cdot \sqrt{a^2} \][/tex]
Since [tex]\(\sqrt{a^2} = a\)[/tex], the equation becomes:
[tex]\[ c = \sqrt{2} \cdot a \][/tex]
Therefore, we have proven that in a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle, the length of the hypotenuse [tex]\(c\)[/tex] is [tex]\(\sqrt{2}\)[/tex] times the length of each leg [tex]\(a\)[/tex]. The final answer is:
[tex]\[ c = \sqrt{2} \cdot a \][/tex]
This completes the proof with the final result:
[tex]\[ c = \sqrt{2}a \][/tex]
Given:
- Triangle [tex]\(XYZ\)[/tex] is an isosceles right triangle, also known as a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle.
- Let the legs of the triangle be [tex]\(a\)[/tex] and [tex]\(a\)[/tex], and the hypotenuse be [tex]\(c\)[/tex].
Step-by-Step Solution:
1. Initial Equation:
We start by using the Pythagorean theorem for the right triangle [tex]\(XYZ\)[/tex]:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
Since [tex]\(XYZ\)[/tex] is an isosceles right triangle, the lengths of the legs are equal, so [tex]\(a = b\)[/tex]. Thus, the equation becomes:
[tex]\[ a^2 + a^2 = c^2 \][/tex]
2. Combine Like Terms:
By combining the terms on the left side of the equation, we get:
[tex]\[ 2a^2 = c^2 \][/tex]
3. Taking the Square Root:
To find the length of the hypotenuse [tex]\(c\)[/tex], we need to determine the principal square root of both sides of the equation:
[tex]\[ c = \sqrt{2a^2} \][/tex]
4. Simplify the Square Root:
Simplifying the square root expression, we can separate the constant factor and the variable:
[tex]\[ c = \sqrt{2} \cdot \sqrt{a^2} \][/tex]
Since [tex]\(\sqrt{a^2} = a\)[/tex], the equation becomes:
[tex]\[ c = \sqrt{2} \cdot a \][/tex]
Therefore, we have proven that in a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle, the length of the hypotenuse [tex]\(c\)[/tex] is [tex]\(\sqrt{2}\)[/tex] times the length of each leg [tex]\(a\)[/tex]. The final answer is:
[tex]\[ c = \sqrt{2} \cdot a \][/tex]
This completes the proof with the final result:
[tex]\[ c = \sqrt{2}a \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.