Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To complete the proof that in a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle, the hypotenuse is [tex]\(\sqrt{2}\)[/tex] times the length of each leg, we can follow the steps as outlined below:
Given:
- Triangle [tex]\(XYZ\)[/tex] is an isosceles right triangle, also known as a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle.
- Let the legs of the triangle be [tex]\(a\)[/tex] and [tex]\(a\)[/tex], and the hypotenuse be [tex]\(c\)[/tex].
Step-by-Step Solution:
1. Initial Equation:
We start by using the Pythagorean theorem for the right triangle [tex]\(XYZ\)[/tex]:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
Since [tex]\(XYZ\)[/tex] is an isosceles right triangle, the lengths of the legs are equal, so [tex]\(a = b\)[/tex]. Thus, the equation becomes:
[tex]\[ a^2 + a^2 = c^2 \][/tex]
2. Combine Like Terms:
By combining the terms on the left side of the equation, we get:
[tex]\[ 2a^2 = c^2 \][/tex]
3. Taking the Square Root:
To find the length of the hypotenuse [tex]\(c\)[/tex], we need to determine the principal square root of both sides of the equation:
[tex]\[ c = \sqrt{2a^2} \][/tex]
4. Simplify the Square Root:
Simplifying the square root expression, we can separate the constant factor and the variable:
[tex]\[ c = \sqrt{2} \cdot \sqrt{a^2} \][/tex]
Since [tex]\(\sqrt{a^2} = a\)[/tex], the equation becomes:
[tex]\[ c = \sqrt{2} \cdot a \][/tex]
Therefore, we have proven that in a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle, the length of the hypotenuse [tex]\(c\)[/tex] is [tex]\(\sqrt{2}\)[/tex] times the length of each leg [tex]\(a\)[/tex]. The final answer is:
[tex]\[ c = \sqrt{2} \cdot a \][/tex]
This completes the proof with the final result:
[tex]\[ c = \sqrt{2}a \][/tex]
Given:
- Triangle [tex]\(XYZ\)[/tex] is an isosceles right triangle, also known as a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle.
- Let the legs of the triangle be [tex]\(a\)[/tex] and [tex]\(a\)[/tex], and the hypotenuse be [tex]\(c\)[/tex].
Step-by-Step Solution:
1. Initial Equation:
We start by using the Pythagorean theorem for the right triangle [tex]\(XYZ\)[/tex]:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
Since [tex]\(XYZ\)[/tex] is an isosceles right triangle, the lengths of the legs are equal, so [tex]\(a = b\)[/tex]. Thus, the equation becomes:
[tex]\[ a^2 + a^2 = c^2 \][/tex]
2. Combine Like Terms:
By combining the terms on the left side of the equation, we get:
[tex]\[ 2a^2 = c^2 \][/tex]
3. Taking the Square Root:
To find the length of the hypotenuse [tex]\(c\)[/tex], we need to determine the principal square root of both sides of the equation:
[tex]\[ c = \sqrt{2a^2} \][/tex]
4. Simplify the Square Root:
Simplifying the square root expression, we can separate the constant factor and the variable:
[tex]\[ c = \sqrt{2} \cdot \sqrt{a^2} \][/tex]
Since [tex]\(\sqrt{a^2} = a\)[/tex], the equation becomes:
[tex]\[ c = \sqrt{2} \cdot a \][/tex]
Therefore, we have proven that in a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle, the length of the hypotenuse [tex]\(c\)[/tex] is [tex]\(\sqrt{2}\)[/tex] times the length of each leg [tex]\(a\)[/tex]. The final answer is:
[tex]\[ c = \sqrt{2} \cdot a \][/tex]
This completes the proof with the final result:
[tex]\[ c = \sqrt{2}a \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.