Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's work through the problem step by step.
Given:
The position function of the car is described by [tex]\( x(t) = 20t + 6t^2 \)[/tex], where [tex]\( x \)[/tex] is the distance covered at time [tex]\( t \)[/tex].
We need to calculate the instantaneous velocity and acceleration when [tex]\( t = 1 \)[/tex] second.
### Step 1: Calculate the Instantaneous Velocity
The instantaneous velocity is given by the first derivative of the position function [tex]\( x(t) \)[/tex] with respect to time [tex]\( t \)[/tex].
So,
[tex]\[ v(t) = \frac{dx(t)}{dt} \][/tex]
Given [tex]\( x(t) = 20t + 6t^2 \)[/tex], we'll differentiate this with respect to [tex]\( t \)[/tex].
[tex]\[ v(t) = \frac{d}{dt} (20t + 6t^2) \][/tex]
Using the power rule for differentiation, we get:
[tex]\[ v(t) = 20 + 12t \][/tex]
Now, we substitute [tex]\( t = 1 \)[/tex] second into this velocity equation:
[tex]\[ v(1) = 20 + 12 \cdot 1 \][/tex]
[tex]\[ v(1) = 20 + 12 \][/tex]
[tex]\[ v(1) = 32 \text{ m/s} \][/tex]
### Step 2: Calculate the Instantaneous Acceleration
The instantaneous acceleration is given by the first derivative of the velocity function [tex]\( v(t) \)[/tex] with respect to time [tex]\( t \)[/tex], which is the same as the second derivative of the position function [tex]\( x(t) \)[/tex].
So,
[tex]\[ a(t) = \frac{dv(t)}{dt} = \frac{d^2x(t)}{dt^2} \][/tex]
Given [tex]\( v(t) = 20 + 12t \)[/tex], we'll differentiate this with respect to [tex]\( t \)[/tex].
[tex]\[ a(t) = \frac{d}{dt} (20 + 12t) \][/tex]
Since the derivative of a constant is 0 and the derivative of [tex]\( 12t \)[/tex] is 12, we get:
[tex]\[ a(t) = 12 \][/tex]
In this case, the acceleration is constant and does not depend on [tex]\( t \)[/tex].
Thus, the acceleration at any time [tex]\( t \)[/tex], including at [tex]\( t = 1 \)[/tex] second, is:
[tex]\[ a(1) = 12 \text{ m/s}^2 \][/tex]
### Final Answer:
When [tex]\( t = 1 \)[/tex] second:
- The instantaneous velocity [tex]\( v = 32 \text{ m/s} \)[/tex]
- The instantaneous acceleration [tex]\( a = 12 \text{ m/s}^2 \)[/tex]
None of the options given match the correct answer.
Given:
The position function of the car is described by [tex]\( x(t) = 20t + 6t^2 \)[/tex], where [tex]\( x \)[/tex] is the distance covered at time [tex]\( t \)[/tex].
We need to calculate the instantaneous velocity and acceleration when [tex]\( t = 1 \)[/tex] second.
### Step 1: Calculate the Instantaneous Velocity
The instantaneous velocity is given by the first derivative of the position function [tex]\( x(t) \)[/tex] with respect to time [tex]\( t \)[/tex].
So,
[tex]\[ v(t) = \frac{dx(t)}{dt} \][/tex]
Given [tex]\( x(t) = 20t + 6t^2 \)[/tex], we'll differentiate this with respect to [tex]\( t \)[/tex].
[tex]\[ v(t) = \frac{d}{dt} (20t + 6t^2) \][/tex]
Using the power rule for differentiation, we get:
[tex]\[ v(t) = 20 + 12t \][/tex]
Now, we substitute [tex]\( t = 1 \)[/tex] second into this velocity equation:
[tex]\[ v(1) = 20 + 12 \cdot 1 \][/tex]
[tex]\[ v(1) = 20 + 12 \][/tex]
[tex]\[ v(1) = 32 \text{ m/s} \][/tex]
### Step 2: Calculate the Instantaneous Acceleration
The instantaneous acceleration is given by the first derivative of the velocity function [tex]\( v(t) \)[/tex] with respect to time [tex]\( t \)[/tex], which is the same as the second derivative of the position function [tex]\( x(t) \)[/tex].
So,
[tex]\[ a(t) = \frac{dv(t)}{dt} = \frac{d^2x(t)}{dt^2} \][/tex]
Given [tex]\( v(t) = 20 + 12t \)[/tex], we'll differentiate this with respect to [tex]\( t \)[/tex].
[tex]\[ a(t) = \frac{d}{dt} (20 + 12t) \][/tex]
Since the derivative of a constant is 0 and the derivative of [tex]\( 12t \)[/tex] is 12, we get:
[tex]\[ a(t) = 12 \][/tex]
In this case, the acceleration is constant and does not depend on [tex]\( t \)[/tex].
Thus, the acceleration at any time [tex]\( t \)[/tex], including at [tex]\( t = 1 \)[/tex] second, is:
[tex]\[ a(1) = 12 \text{ m/s}^2 \][/tex]
### Final Answer:
When [tex]\( t = 1 \)[/tex] second:
- The instantaneous velocity [tex]\( v = 32 \text{ m/s} \)[/tex]
- The instantaneous acceleration [tex]\( a = 12 \text{ m/s}^2 \)[/tex]
None of the options given match the correct answer.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.