Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the median number of siblings from the given survey data, let's follow these steps:
1. Create a List of All Data Points:
First, we need to list out each data point according to its frequency. Here’s the given table:
[tex]\[ \begin{array}{|c|c|} \hline \text{Number of siblings} & \text{Frequency} \\ \hline 0 & 9 \\ \hline 1 & 5 \\ \hline 2 & 7 \\ \hline 3 & 1 \\ \hline 4 & 3 \\ \hline \end{array} \][/tex]
Based on this table, we create a list with the number of siblings appearing according to their frequencies:
[tex]\[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4] \][/tex]
2. Order the List:
The list is already ordered, but to ensure clarity, here it is again:
[tex]\[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4] \][/tex]
3. Find the Median:
To find the median, we need to determine the middle value in this list. If the number of observations (n) is odd, the median is the middle number. If n is even, the median is the average of the two middle numbers.
- Count the total number of data points: [tex]\( n = 25 \)[/tex].
Since [tex]\( n = 25 \)[/tex], an odd number, the median is the middle value. The middle value is located at position:
[tex]\[ \frac{n + 1}{2} = \frac{25 + 1}{2} = 13 \][/tex]
So, the 13th value in the ordered list is the median. If we count the values:
[tex]\[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \mathbf{1}, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4] \][/tex]
The 13th value is 1.
Therefore, the median number of siblings is 1.
1. Create a List of All Data Points:
First, we need to list out each data point according to its frequency. Here’s the given table:
[tex]\[ \begin{array}{|c|c|} \hline \text{Number of siblings} & \text{Frequency} \\ \hline 0 & 9 \\ \hline 1 & 5 \\ \hline 2 & 7 \\ \hline 3 & 1 \\ \hline 4 & 3 \\ \hline \end{array} \][/tex]
Based on this table, we create a list with the number of siblings appearing according to their frequencies:
[tex]\[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4] \][/tex]
2. Order the List:
The list is already ordered, but to ensure clarity, here it is again:
[tex]\[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4] \][/tex]
3. Find the Median:
To find the median, we need to determine the middle value in this list. If the number of observations (n) is odd, the median is the middle number. If n is even, the median is the average of the two middle numbers.
- Count the total number of data points: [tex]\( n = 25 \)[/tex].
Since [tex]\( n = 25 \)[/tex], an odd number, the median is the middle value. The middle value is located at position:
[tex]\[ \frac{n + 1}{2} = \frac{25 + 1}{2} = 13 \][/tex]
So, the 13th value in the ordered list is the median. If we count the values:
[tex]\[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \mathbf{1}, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4] \][/tex]
The 13th value is 1.
Therefore, the median number of siblings is 1.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.