Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the median number of siblings from the given survey data, let's follow these steps:
1. Create a List of All Data Points:
First, we need to list out each data point according to its frequency. Here’s the given table:
[tex]\[ \begin{array}{|c|c|} \hline \text{Number of siblings} & \text{Frequency} \\ \hline 0 & 9 \\ \hline 1 & 5 \\ \hline 2 & 7 \\ \hline 3 & 1 \\ \hline 4 & 3 \\ \hline \end{array} \][/tex]
Based on this table, we create a list with the number of siblings appearing according to their frequencies:
[tex]\[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4] \][/tex]
2. Order the List:
The list is already ordered, but to ensure clarity, here it is again:
[tex]\[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4] \][/tex]
3. Find the Median:
To find the median, we need to determine the middle value in this list. If the number of observations (n) is odd, the median is the middle number. If n is even, the median is the average of the two middle numbers.
- Count the total number of data points: [tex]\( n = 25 \)[/tex].
Since [tex]\( n = 25 \)[/tex], an odd number, the median is the middle value. The middle value is located at position:
[tex]\[ \frac{n + 1}{2} = \frac{25 + 1}{2} = 13 \][/tex]
So, the 13th value in the ordered list is the median. If we count the values:
[tex]\[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \mathbf{1}, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4] \][/tex]
The 13th value is 1.
Therefore, the median number of siblings is 1.
1. Create a List of All Data Points:
First, we need to list out each data point according to its frequency. Here’s the given table:
[tex]\[ \begin{array}{|c|c|} \hline \text{Number of siblings} & \text{Frequency} \\ \hline 0 & 9 \\ \hline 1 & 5 \\ \hline 2 & 7 \\ \hline 3 & 1 \\ \hline 4 & 3 \\ \hline \end{array} \][/tex]
Based on this table, we create a list with the number of siblings appearing according to their frequencies:
[tex]\[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4] \][/tex]
2. Order the List:
The list is already ordered, but to ensure clarity, here it is again:
[tex]\[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4] \][/tex]
3. Find the Median:
To find the median, we need to determine the middle value in this list. If the number of observations (n) is odd, the median is the middle number. If n is even, the median is the average of the two middle numbers.
- Count the total number of data points: [tex]\( n = 25 \)[/tex].
Since [tex]\( n = 25 \)[/tex], an odd number, the median is the middle value. The middle value is located at position:
[tex]\[ \frac{n + 1}{2} = \frac{25 + 1}{2} = 13 \][/tex]
So, the 13th value in the ordered list is the median. If we count the values:
[tex]\[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \mathbf{1}, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4] \][/tex]
The 13th value is 1.
Therefore, the median number of siblings is 1.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.