Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To write the equation of the circle given that points [tex]\( F(2,6) \)[/tex] and [tex]\( G(14,22) \)[/tex] are the endpoints of a diameter, we proceed with the following steps:
1. Determine the center of the circle:
The center of the circle, denoted by [tex]\((h, k)\)[/tex], is the midpoint of the diameter formed by points [tex]\( F \)[/tex] and [tex]\( G \)[/tex]. To find the midpoint, we use the midpoint formula:
[tex]\[ h = \frac{x_1 + x_2}{2}, \quad k = \frac{y_1 + y_2}{2} \][/tex]
Substituting the coordinates:
[tex]\[ h = \frac{2 + 14}{2} = 8, \quad k = \frac{6 + 22}{2} = 14 \][/tex]
So, the center of the circle is [tex]\((8, 14)\)[/tex].
2. Determine the radius of the circle:
The radius [tex]\( r \)[/tex] of the circle is half the length of the diameter. To find the length of the diameter, we use the distance formula:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Substituting the coordinates:
[tex]\[ d = \sqrt{(14 - 2)^2 + (22 - 6)^2} = \sqrt{12^2 + 16^2} = \sqrt{144 + 256} = \sqrt{400} = 20 \][/tex]
Hence, the radius is:
[tex]\[ r = \frac{d}{2} = \frac{20}{2} = 10 \][/tex]
3. Form the equation of the circle:
The standard equation of a circle with center [tex]\((h, k)\)[/tex] and radius [tex]\( r \)[/tex] is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
Substituting the values we found for [tex]\( h \)[/tex], [tex]\( k \)[/tex], and [tex]\( r \)[/tex]:
[tex]\[ (x - 8)^2 + (y - 14)^2 = 10^2 \][/tex]
Simplifying the radius squared:
[tex]\[ (x - 8)^2 + (y - 14)^2 = 100 \][/tex]
Therefore, the equation of the circle is:
[tex]\[ (x - 8)^2 + (y - 14)^2 = 100 \][/tex]
1. Determine the center of the circle:
The center of the circle, denoted by [tex]\((h, k)\)[/tex], is the midpoint of the diameter formed by points [tex]\( F \)[/tex] and [tex]\( G \)[/tex]. To find the midpoint, we use the midpoint formula:
[tex]\[ h = \frac{x_1 + x_2}{2}, \quad k = \frac{y_1 + y_2}{2} \][/tex]
Substituting the coordinates:
[tex]\[ h = \frac{2 + 14}{2} = 8, \quad k = \frac{6 + 22}{2} = 14 \][/tex]
So, the center of the circle is [tex]\((8, 14)\)[/tex].
2. Determine the radius of the circle:
The radius [tex]\( r \)[/tex] of the circle is half the length of the diameter. To find the length of the diameter, we use the distance formula:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Substituting the coordinates:
[tex]\[ d = \sqrt{(14 - 2)^2 + (22 - 6)^2} = \sqrt{12^2 + 16^2} = \sqrt{144 + 256} = \sqrt{400} = 20 \][/tex]
Hence, the radius is:
[tex]\[ r = \frac{d}{2} = \frac{20}{2} = 10 \][/tex]
3. Form the equation of the circle:
The standard equation of a circle with center [tex]\((h, k)\)[/tex] and radius [tex]\( r \)[/tex] is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
Substituting the values we found for [tex]\( h \)[/tex], [tex]\( k \)[/tex], and [tex]\( r \)[/tex]:
[tex]\[ (x - 8)^2 + (y - 14)^2 = 10^2 \][/tex]
Simplifying the radius squared:
[tex]\[ (x - 8)^2 + (y - 14)^2 = 100 \][/tex]
Therefore, the equation of the circle is:
[tex]\[ (x - 8)^2 + (y - 14)^2 = 100 \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.