At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve the compound inequality step by step.
We have two inequalities:
1. [tex]\(2x + 6 > -11\)[/tex]
2. [tex]\(2x + 6 < 10\)[/tex]
We need to solve each inequality separately.
### Solving the first inequality:
[tex]\[2x + 6 > -11\][/tex]
Step 1: Subtract 6 from both sides to isolate the term with the variable [tex]\(x\)[/tex]:
[tex]\[ 2x + 6 - 6 > -11 - 6 \][/tex]
[tex]\[ 2x > -17 \][/tex]
Step 2: Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{2x}{2} > \frac{-17}{2} \][/tex]
[tex]\[ x > -\frac{17}{2} \][/tex]
### Solving the second inequality:
[tex]\[2x + 6 < 10\][/tex]
Step 1: Subtract 6 from both sides to isolate the term with the variable [tex]\(x\)[/tex]:
[tex]\[ 2x + 6 - 6 < 10 - 6 \][/tex]
[tex]\[ 2x < 4 \][/tex]
Step 2: Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{2x}{2} < \frac{4}{2} \][/tex]
[tex]\[ x < 2 \][/tex]
### Combining the results:
We now combine the solutions from both inequalities:
[tex]\[ -\frac{17}{2} < x < 2 \][/tex]
This means [tex]\(x\)[/tex] must be greater than [tex]\(-\frac{17}{2}\)[/tex] and less than 2. The solution set can be written in interval notation as:
[tex]\[ \left( -\frac{17}{2}, 2 \right) \][/tex]
### Conclusion:
The solution set for the compound inequality [tex]\(2x + 6 > -11\)[/tex] and [tex]\(2x + 6 < 10\)[/tex] is [tex]\(\left( -\frac{17}{2}, 2 \right)\)[/tex].
We have two inequalities:
1. [tex]\(2x + 6 > -11\)[/tex]
2. [tex]\(2x + 6 < 10\)[/tex]
We need to solve each inequality separately.
### Solving the first inequality:
[tex]\[2x + 6 > -11\][/tex]
Step 1: Subtract 6 from both sides to isolate the term with the variable [tex]\(x\)[/tex]:
[tex]\[ 2x + 6 - 6 > -11 - 6 \][/tex]
[tex]\[ 2x > -17 \][/tex]
Step 2: Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{2x}{2} > \frac{-17}{2} \][/tex]
[tex]\[ x > -\frac{17}{2} \][/tex]
### Solving the second inequality:
[tex]\[2x + 6 < 10\][/tex]
Step 1: Subtract 6 from both sides to isolate the term with the variable [tex]\(x\)[/tex]:
[tex]\[ 2x + 6 - 6 < 10 - 6 \][/tex]
[tex]\[ 2x < 4 \][/tex]
Step 2: Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{2x}{2} < \frac{4}{2} \][/tex]
[tex]\[ x < 2 \][/tex]
### Combining the results:
We now combine the solutions from both inequalities:
[tex]\[ -\frac{17}{2} < x < 2 \][/tex]
This means [tex]\(x\)[/tex] must be greater than [tex]\(-\frac{17}{2}\)[/tex] and less than 2. The solution set can be written in interval notation as:
[tex]\[ \left( -\frac{17}{2}, 2 \right) \][/tex]
### Conclusion:
The solution set for the compound inequality [tex]\(2x + 6 > -11\)[/tex] and [tex]\(2x + 6 < 10\)[/tex] is [tex]\(\left( -\frac{17}{2}, 2 \right)\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.