Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's solve the compound inequality step by step.
We have two inequalities:
1. [tex]\(2x + 6 > -11\)[/tex]
2. [tex]\(2x + 6 < 10\)[/tex]
We need to solve each inequality separately.
### Solving the first inequality:
[tex]\[2x + 6 > -11\][/tex]
Step 1: Subtract 6 from both sides to isolate the term with the variable [tex]\(x\)[/tex]:
[tex]\[ 2x + 6 - 6 > -11 - 6 \][/tex]
[tex]\[ 2x > -17 \][/tex]
Step 2: Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{2x}{2} > \frac{-17}{2} \][/tex]
[tex]\[ x > -\frac{17}{2} \][/tex]
### Solving the second inequality:
[tex]\[2x + 6 < 10\][/tex]
Step 1: Subtract 6 from both sides to isolate the term with the variable [tex]\(x\)[/tex]:
[tex]\[ 2x + 6 - 6 < 10 - 6 \][/tex]
[tex]\[ 2x < 4 \][/tex]
Step 2: Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{2x}{2} < \frac{4}{2} \][/tex]
[tex]\[ x < 2 \][/tex]
### Combining the results:
We now combine the solutions from both inequalities:
[tex]\[ -\frac{17}{2} < x < 2 \][/tex]
This means [tex]\(x\)[/tex] must be greater than [tex]\(-\frac{17}{2}\)[/tex] and less than 2. The solution set can be written in interval notation as:
[tex]\[ \left( -\frac{17}{2}, 2 \right) \][/tex]
### Conclusion:
The solution set for the compound inequality [tex]\(2x + 6 > -11\)[/tex] and [tex]\(2x + 6 < 10\)[/tex] is [tex]\(\left( -\frac{17}{2}, 2 \right)\)[/tex].
We have two inequalities:
1. [tex]\(2x + 6 > -11\)[/tex]
2. [tex]\(2x + 6 < 10\)[/tex]
We need to solve each inequality separately.
### Solving the first inequality:
[tex]\[2x + 6 > -11\][/tex]
Step 1: Subtract 6 from both sides to isolate the term with the variable [tex]\(x\)[/tex]:
[tex]\[ 2x + 6 - 6 > -11 - 6 \][/tex]
[tex]\[ 2x > -17 \][/tex]
Step 2: Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{2x}{2} > \frac{-17}{2} \][/tex]
[tex]\[ x > -\frac{17}{2} \][/tex]
### Solving the second inequality:
[tex]\[2x + 6 < 10\][/tex]
Step 1: Subtract 6 from both sides to isolate the term with the variable [tex]\(x\)[/tex]:
[tex]\[ 2x + 6 - 6 < 10 - 6 \][/tex]
[tex]\[ 2x < 4 \][/tex]
Step 2: Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{2x}{2} < \frac{4}{2} \][/tex]
[tex]\[ x < 2 \][/tex]
### Combining the results:
We now combine the solutions from both inequalities:
[tex]\[ -\frac{17}{2} < x < 2 \][/tex]
This means [tex]\(x\)[/tex] must be greater than [tex]\(-\frac{17}{2}\)[/tex] and less than 2. The solution set can be written in interval notation as:
[tex]\[ \left( -\frac{17}{2}, 2 \right) \][/tex]
### Conclusion:
The solution set for the compound inequality [tex]\(2x + 6 > -11\)[/tex] and [tex]\(2x + 6 < 10\)[/tex] is [tex]\(\left( -\frac{17}{2}, 2 \right)\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.