Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's solve the compound inequality step by step.
We have two inequalities:
1. [tex]\(2x + 6 > -11\)[/tex]
2. [tex]\(2x + 6 < 10\)[/tex]
We need to solve each inequality separately.
### Solving the first inequality:
[tex]\[2x + 6 > -11\][/tex]
Step 1: Subtract 6 from both sides to isolate the term with the variable [tex]\(x\)[/tex]:
[tex]\[ 2x + 6 - 6 > -11 - 6 \][/tex]
[tex]\[ 2x > -17 \][/tex]
Step 2: Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{2x}{2} > \frac{-17}{2} \][/tex]
[tex]\[ x > -\frac{17}{2} \][/tex]
### Solving the second inequality:
[tex]\[2x + 6 < 10\][/tex]
Step 1: Subtract 6 from both sides to isolate the term with the variable [tex]\(x\)[/tex]:
[tex]\[ 2x + 6 - 6 < 10 - 6 \][/tex]
[tex]\[ 2x < 4 \][/tex]
Step 2: Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{2x}{2} < \frac{4}{2} \][/tex]
[tex]\[ x < 2 \][/tex]
### Combining the results:
We now combine the solutions from both inequalities:
[tex]\[ -\frac{17}{2} < x < 2 \][/tex]
This means [tex]\(x\)[/tex] must be greater than [tex]\(-\frac{17}{2}\)[/tex] and less than 2. The solution set can be written in interval notation as:
[tex]\[ \left( -\frac{17}{2}, 2 \right) \][/tex]
### Conclusion:
The solution set for the compound inequality [tex]\(2x + 6 > -11\)[/tex] and [tex]\(2x + 6 < 10\)[/tex] is [tex]\(\left( -\frac{17}{2}, 2 \right)\)[/tex].
We have two inequalities:
1. [tex]\(2x + 6 > -11\)[/tex]
2. [tex]\(2x + 6 < 10\)[/tex]
We need to solve each inequality separately.
### Solving the first inequality:
[tex]\[2x + 6 > -11\][/tex]
Step 1: Subtract 6 from both sides to isolate the term with the variable [tex]\(x\)[/tex]:
[tex]\[ 2x + 6 - 6 > -11 - 6 \][/tex]
[tex]\[ 2x > -17 \][/tex]
Step 2: Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{2x}{2} > \frac{-17}{2} \][/tex]
[tex]\[ x > -\frac{17}{2} \][/tex]
### Solving the second inequality:
[tex]\[2x + 6 < 10\][/tex]
Step 1: Subtract 6 from both sides to isolate the term with the variable [tex]\(x\)[/tex]:
[tex]\[ 2x + 6 - 6 < 10 - 6 \][/tex]
[tex]\[ 2x < 4 \][/tex]
Step 2: Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{2x}{2} < \frac{4}{2} \][/tex]
[tex]\[ x < 2 \][/tex]
### Combining the results:
We now combine the solutions from both inequalities:
[tex]\[ -\frac{17}{2} < x < 2 \][/tex]
This means [tex]\(x\)[/tex] must be greater than [tex]\(-\frac{17}{2}\)[/tex] and less than 2. The solution set can be written in interval notation as:
[tex]\[ \left( -\frac{17}{2}, 2 \right) \][/tex]
### Conclusion:
The solution set for the compound inequality [tex]\(2x + 6 > -11\)[/tex] and [tex]\(2x + 6 < 10\)[/tex] is [tex]\(\left( -\frac{17}{2}, 2 \right)\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.