At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the sector area created by the hands of a clock when the time is 4:00 and the radius of the clock is 9 inches, follow these steps:
1. Determine the angle (θ) in radians for the sector:
- The full circle represents 12 hours, and each hour marks an angle of [tex]\( \frac{2\pi}{12} = \frac{\pi}{6} \)[/tex] radians.
- At 4:00, we are 4 hours from the top (12:00) position, so the angle [tex]\( \theta = 4 \times \frac{\pi}{6} = \frac{4\pi}{6} = \frac{2\pi}{3} \)[/tex] radians.
2. Calculate the area of the sector using the formula:
[tex]\[ \text{Sector Area} = \frac{1}{2} \times \text{radius}^2 \times \theta \][/tex]
- Here, the radius [tex]\( r \)[/tex] is 9 inches and [tex]\( \theta \)[/tex] is [tex]\( \frac{2\pi}{3} \)[/tex] radians.
- Plugging these values into the formula:
[tex]\[ \text{Sector Area} = \frac{1}{2} \times 9^2 \times \frac{2\pi}{3} \][/tex]
- Simplify the calculation:
[tex]\[ \text{Sector Area} = \frac{1}{2} \times 81 \times \frac{2\pi}{3} = \frac{81 \times 2\pi}{6} = \frac{162\pi}{6} = 27\pi \text{ square inches} \][/tex]
Thus, the sector area created by the hands of a clock with a radius of 9 inches at 4:00 is:
[tex]\[ \boxed{27 \pi \text{ in}^2} \][/tex]
1. Determine the angle (θ) in radians for the sector:
- The full circle represents 12 hours, and each hour marks an angle of [tex]\( \frac{2\pi}{12} = \frac{\pi}{6} \)[/tex] radians.
- At 4:00, we are 4 hours from the top (12:00) position, so the angle [tex]\( \theta = 4 \times \frac{\pi}{6} = \frac{4\pi}{6} = \frac{2\pi}{3} \)[/tex] radians.
2. Calculate the area of the sector using the formula:
[tex]\[ \text{Sector Area} = \frac{1}{2} \times \text{radius}^2 \times \theta \][/tex]
- Here, the radius [tex]\( r \)[/tex] is 9 inches and [tex]\( \theta \)[/tex] is [tex]\( \frac{2\pi}{3} \)[/tex] radians.
- Plugging these values into the formula:
[tex]\[ \text{Sector Area} = \frac{1}{2} \times 9^2 \times \frac{2\pi}{3} \][/tex]
- Simplify the calculation:
[tex]\[ \text{Sector Area} = \frac{1}{2} \times 81 \times \frac{2\pi}{3} = \frac{81 \times 2\pi}{6} = \frac{162\pi}{6} = 27\pi \text{ square inches} \][/tex]
Thus, the sector area created by the hands of a clock with a radius of 9 inches at 4:00 is:
[tex]\[ \boxed{27 \pi \text{ in}^2} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.