Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the problem of finding the approximate area of the path alone, let's follow these steps:
1. Determine the total radius: The radius of the garden is given as 8 feet. The path around the garden adds another 3 feet to this radius. Therefore, the total radius (from the center of the garden to the outer edge of the path) is:
[tex]\[ \text{Total radius} = \text{Radius of the garden} + \text{Width of the path} = 8\, \text{feet} + 3\, \text{feet} = 11\, \text{feet} \][/tex]
2. Calculate the area of the larger circle (garden + path): Using the total radius of 11 feet, we can find the area of the larger circle. The formula for the area of a circle is [tex]\( \pi r^2 \)[/tex]:
[tex]\[ \text{Area of the larger circle} = \pi \times (11\, \text{feet})^2 = 3.14 \times 121\, \text{feet}^2 = 379.94\, \text{feet}^2 \][/tex]
3. Calculate the area of the garden alone: Next, we use the radius of just the garden, which is 8 feet, to calculate the area of the garden alone:
[tex]\[ \text{Area of the garden} = \pi \times (8\, \text{feet})^2 = 3.14 \times 64\, \text{feet}^2 = 200.96\, \text{feet}^2 \][/tex]
4. Calculate the area of the path alone: The area of the path is the difference between the area of the larger circle (garden + path) and the area of the garden:
[tex]\[ \text{Area of the path} = \text{Area of larger circle} - \text{Area of garden} = 379.94\, \text{feet}^2 - 200.96\, \text{feet}^2 = 178.98\, \text{feet}^2 \][/tex]
Therefore, the approximate area of the path alone is [tex]\( 178.98 \, \text{ft}^2 \)[/tex]. The correct answer is:
[tex]\[ \boxed{178.98 \, \text{ft}^2} \][/tex]
1. Determine the total radius: The radius of the garden is given as 8 feet. The path around the garden adds another 3 feet to this radius. Therefore, the total radius (from the center of the garden to the outer edge of the path) is:
[tex]\[ \text{Total radius} = \text{Radius of the garden} + \text{Width of the path} = 8\, \text{feet} + 3\, \text{feet} = 11\, \text{feet} \][/tex]
2. Calculate the area of the larger circle (garden + path): Using the total radius of 11 feet, we can find the area of the larger circle. The formula for the area of a circle is [tex]\( \pi r^2 \)[/tex]:
[tex]\[ \text{Area of the larger circle} = \pi \times (11\, \text{feet})^2 = 3.14 \times 121\, \text{feet}^2 = 379.94\, \text{feet}^2 \][/tex]
3. Calculate the area of the garden alone: Next, we use the radius of just the garden, which is 8 feet, to calculate the area of the garden alone:
[tex]\[ \text{Area of the garden} = \pi \times (8\, \text{feet})^2 = 3.14 \times 64\, \text{feet}^2 = 200.96\, \text{feet}^2 \][/tex]
4. Calculate the area of the path alone: The area of the path is the difference between the area of the larger circle (garden + path) and the area of the garden:
[tex]\[ \text{Area of the path} = \text{Area of larger circle} - \text{Area of garden} = 379.94\, \text{feet}^2 - 200.96\, \text{feet}^2 = 178.98\, \text{feet}^2 \][/tex]
Therefore, the approximate area of the path alone is [tex]\( 178.98 \, \text{ft}^2 \)[/tex]. The correct answer is:
[tex]\[ \boxed{178.98 \, \text{ft}^2} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.