Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine if [tex]\( R \subset A \)[/tex], we need to check if every element in set [tex]\( R \)[/tex] is also an element in set [tex]\( A \)[/tex].
Here are the sets given:
[tex]\[ U = \{ x \mid x \text{ is a real number} \} \][/tex]
[tex]\[ A = \{ x \mid x \text{ is an odd integer} \} \][/tex]
[tex]\[ R = \{ x \mid x = 3, 7, 11, 27 \} \][/tex]
Let's examine the elements of set [tex]\( R \)[/tex]:
- The elements of [tex]\( R \)[/tex] are [tex]\( \{ 3, 7, 11, 27 \} \)[/tex].
Next, let's define set [tex]\( A \)[/tex]:
- Set [tex]\( A \)[/tex] contains all odd integers. So [tex]\( A \)[/tex] includes numbers like [tex]\(-1, 1, 3, 5, 7, 9, 11, \dots, \)[/tex].
Now, we check if each element of [tex]\( R \)[/tex] is in [tex]\( A \)[/tex]:
- [tex]\( 3 \)[/tex] is an odd integer and is in [tex]\( A \)[/tex].
- [tex]\( 7 \)[/tex] is an odd integer and is in [tex]\( A \)[/tex].
- [tex]\( 11 \)[/tex] is an odd integer and is in [tex]\( A \)[/tex].
- [tex]\( 27 \)[/tex] is an odd integer and is in [tex]\( A \)[/tex].
Since all the elements [tex]\( 3, 7, 11, 27 \)[/tex] in set [tex]\( R \)[/tex] are also in set [tex]\( A \)[/tex], we can conclude that [tex]\( R \subset A \)[/tex].
Therefore, the correct statement is:
[tex]\[ \text{Yes, because all the elements of set } R \text{ are in set } A. \][/tex]
Here are the sets given:
[tex]\[ U = \{ x \mid x \text{ is a real number} \} \][/tex]
[tex]\[ A = \{ x \mid x \text{ is an odd integer} \} \][/tex]
[tex]\[ R = \{ x \mid x = 3, 7, 11, 27 \} \][/tex]
Let's examine the elements of set [tex]\( R \)[/tex]:
- The elements of [tex]\( R \)[/tex] are [tex]\( \{ 3, 7, 11, 27 \} \)[/tex].
Next, let's define set [tex]\( A \)[/tex]:
- Set [tex]\( A \)[/tex] contains all odd integers. So [tex]\( A \)[/tex] includes numbers like [tex]\(-1, 1, 3, 5, 7, 9, 11, \dots, \)[/tex].
Now, we check if each element of [tex]\( R \)[/tex] is in [tex]\( A \)[/tex]:
- [tex]\( 3 \)[/tex] is an odd integer and is in [tex]\( A \)[/tex].
- [tex]\( 7 \)[/tex] is an odd integer and is in [tex]\( A \)[/tex].
- [tex]\( 11 \)[/tex] is an odd integer and is in [tex]\( A \)[/tex].
- [tex]\( 27 \)[/tex] is an odd integer and is in [tex]\( A \)[/tex].
Since all the elements [tex]\( 3, 7, 11, 27 \)[/tex] in set [tex]\( R \)[/tex] are also in set [tex]\( A \)[/tex], we can conclude that [tex]\( R \subset A \)[/tex].
Therefore, the correct statement is:
[tex]\[ \text{Yes, because all the elements of set } R \text{ are in set } A. \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.