Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which equation represents inverse variation between the variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex], we recall that in an inverse variation, one variable is equal to a constant divided by the other variable. Mathematically, we express inverse variation as:
[tex]\[ y = \frac{k}{x} \][/tex]
where [tex]\( k \)[/tex] is a constant.
Let's examine each of the given options:
A. [tex]\( y = 6x \)[/tex]
- This is a direct variation. When [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] increases proportionally, as they are directly multiplied by a constant (6 in this case). Hence, this is not an inverse variation.
B. [tex]\( y = x + 6 \)[/tex]
- This is neither direct nor inverse variation. It represents a linear relationship with a slope of 1 and a y-intercept of 6. The variables are not inversely related here.
C. [tex]\( y = \frac{x}{6} \)[/tex]
- This is also a direct variation with a constant of [tex]\(\frac{1}{6}\)[/tex]. As [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] increases proportionally by [tex]\(\frac{x}{6}\)[/tex]. This does not represent inverse variation.
D. [tex]\( y = \frac{6}{x} \)[/tex]
- This equation fits the definition of inverse variation. Here, [tex]\( y \)[/tex] is equal to a constant (6) divided by [tex]\( x \)[/tex]. As [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] decreases in such a way that their product [tex]\( xy \)[/tex] remains a constant.
Thus, the equation that represents an inverse variation between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is:
[tex]\[ \boxed{y = \frac{6}{x}} \][/tex]
So, the correct answer is:
[tex]\[ \text{Option D. } y = \frac{6}{x} \][/tex]
[tex]\[ y = \frac{k}{x} \][/tex]
where [tex]\( k \)[/tex] is a constant.
Let's examine each of the given options:
A. [tex]\( y = 6x \)[/tex]
- This is a direct variation. When [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] increases proportionally, as they are directly multiplied by a constant (6 in this case). Hence, this is not an inverse variation.
B. [tex]\( y = x + 6 \)[/tex]
- This is neither direct nor inverse variation. It represents a linear relationship with a slope of 1 and a y-intercept of 6. The variables are not inversely related here.
C. [tex]\( y = \frac{x}{6} \)[/tex]
- This is also a direct variation with a constant of [tex]\(\frac{1}{6}\)[/tex]. As [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] increases proportionally by [tex]\(\frac{x}{6}\)[/tex]. This does not represent inverse variation.
D. [tex]\( y = \frac{6}{x} \)[/tex]
- This equation fits the definition of inverse variation. Here, [tex]\( y \)[/tex] is equal to a constant (6) divided by [tex]\( x \)[/tex]. As [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] decreases in such a way that their product [tex]\( xy \)[/tex] remains a constant.
Thus, the equation that represents an inverse variation between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is:
[tex]\[ \boxed{y = \frac{6}{x}} \][/tex]
So, the correct answer is:
[tex]\[ \text{Option D. } y = \frac{6}{x} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.