Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which equation represents inverse variation between the variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex], we recall that in an inverse variation, one variable is equal to a constant divided by the other variable. Mathematically, we express inverse variation as:
[tex]\[ y = \frac{k}{x} \][/tex]
where [tex]\( k \)[/tex] is a constant.
Let's examine each of the given options:
A. [tex]\( y = 6x \)[/tex]
- This is a direct variation. When [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] increases proportionally, as they are directly multiplied by a constant (6 in this case). Hence, this is not an inverse variation.
B. [tex]\( y = x + 6 \)[/tex]
- This is neither direct nor inverse variation. It represents a linear relationship with a slope of 1 and a y-intercept of 6. The variables are not inversely related here.
C. [tex]\( y = \frac{x}{6} \)[/tex]
- This is also a direct variation with a constant of [tex]\(\frac{1}{6}\)[/tex]. As [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] increases proportionally by [tex]\(\frac{x}{6}\)[/tex]. This does not represent inverse variation.
D. [tex]\( y = \frac{6}{x} \)[/tex]
- This equation fits the definition of inverse variation. Here, [tex]\( y \)[/tex] is equal to a constant (6) divided by [tex]\( x \)[/tex]. As [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] decreases in such a way that their product [tex]\( xy \)[/tex] remains a constant.
Thus, the equation that represents an inverse variation between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is:
[tex]\[ \boxed{y = \frac{6}{x}} \][/tex]
So, the correct answer is:
[tex]\[ \text{Option D. } y = \frac{6}{x} \][/tex]
[tex]\[ y = \frac{k}{x} \][/tex]
where [tex]\( k \)[/tex] is a constant.
Let's examine each of the given options:
A. [tex]\( y = 6x \)[/tex]
- This is a direct variation. When [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] increases proportionally, as they are directly multiplied by a constant (6 in this case). Hence, this is not an inverse variation.
B. [tex]\( y = x + 6 \)[/tex]
- This is neither direct nor inverse variation. It represents a linear relationship with a slope of 1 and a y-intercept of 6. The variables are not inversely related here.
C. [tex]\( y = \frac{x}{6} \)[/tex]
- This is also a direct variation with a constant of [tex]\(\frac{1}{6}\)[/tex]. As [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] increases proportionally by [tex]\(\frac{x}{6}\)[/tex]. This does not represent inverse variation.
D. [tex]\( y = \frac{6}{x} \)[/tex]
- This equation fits the definition of inverse variation. Here, [tex]\( y \)[/tex] is equal to a constant (6) divided by [tex]\( x \)[/tex]. As [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] decreases in such a way that their product [tex]\( xy \)[/tex] remains a constant.
Thus, the equation that represents an inverse variation between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is:
[tex]\[ \boxed{y = \frac{6}{x}} \][/tex]
So, the correct answer is:
[tex]\[ \text{Option D. } y = \frac{6}{x} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.