Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

What is the equation of the line that is parallel to the given line and passes through the point [tex]\((12, -2)\)[/tex]?

A. [tex]\( y = -\frac{6}{5} x + 10 \)[/tex]
B. [tex]\( y = \frac{6}{5} x + 12 \)[/tex]
C. [tex]\( y = -\frac{5}{6} x - 10 \)[/tex]
D. [tex]\( y = \frac{5}{6} x - 12 \)[/tex]

Sagot :

To determine the equation of a line that is parallel to the given line and passes through a specific point, we can follow these steps:

1. Identify the slope of the given line:
The given line is [tex]\( y = -\frac{6}{5} x + 10 \)[/tex]. The coefficient of [tex]\( x \)[/tex] (i.e., [tex]\(-\frac{6}{5}\)[/tex]) is the slope of the line.

2. Use the slope of the given line for the parallel line:
Since the lines are parallel, the slope of the new line will be the same as that of the given line, [tex]\( m = -\frac{6}{5} \)[/tex].

3. Point-slope form of the line:
To find the equation of the parallel line that passes through the point [tex]\((12, -2)\)[/tex], use the point-slope form of a linear equation:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1) = (12, -2)\)[/tex] and [tex]\( m = -\frac{6}{5} \)[/tex].

4. Substitute the known values into the point-slope form:
[tex]\[ y - (-2) = -\frac{6}{5}(x - 12) \][/tex]
Simplifying this, we get:
[tex]\[ y + 2 = -\frac{6}{5}(x - 12) \][/tex]
[tex]\[ y + 2 = -\frac{6}{5}x + \frac{72}{5} \][/tex]

5. Isolate [tex]\( y \)[/tex]:
To put the equation in slope-intercept form [tex]\( y = mx + b \)[/tex], solve for [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{6}{5}x + \frac{72}{5} - 2 \][/tex]
Convert [tex]\( -2 \)[/tex] into a fraction with a denominator of 5:
[tex]\[ -2 = -\frac{10}{5} \][/tex]
Substitute into the equation:
[tex]\[ y = -\frac{6}{5}x + \frac{72}{5} - \frac{10}{5} \][/tex]
Combine the constant terms:
[tex]\[ y = -\frac{6}{5}x + \frac{62}{5} \][/tex]

Hence, the equation of the line that is parallel to the given line and passes through the point [tex]\((12, -2)\)[/tex] is:
[tex]\[ y = -\frac{6}{5}x + \frac{62}{5} \][/tex]

This can be equivalently written in decimal form as:
[tex]\[ y = -1.2x + 12.4 \][/tex]

Out of the provided options, it corresponds to:
[tex]\[ y = -\frac{6}{5}x + 12.4 \][/tex]

Therefore, none of the provided options fit. However, the correct steps and calculations confirm that the correct answer derived from the process should indeed be:

[tex]\[ y = -\frac{6}{5}x + \frac{62}{5} \quad \text{or} \quad y = -1.2x + 12.4. \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.