Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
0.143 nm
Explanation:
The Coulomb potential energy between two charged particles can be found with:
[tex]\large \text{$ U=\ $} \LARGE \text{$ \frac{1}{4\pi \epsilon_0}\frac{q_1 q_2}{r} $}[/tex]
where
- U is the electric potential energy
- ε₀ is the vacuum permittivity (8.854×10⁻¹² C²/J/m)
- q₁ and q₂ are the charges of the particles
- r is the distance between the particles
Plug in values and solve for the distance r.
[tex]\large \text{$ U=\ $} \LARGE \text{$ \frac{1}{4\pi \epsilon_0}\frac{q_1 q_2}{r} $}\\\\\large \text{$ 970\frac{kJ}{mol}\times\frac{1\ mol}{6.02\times 10^{23}}\times\frac{1000 J}{kJ} =\ $} \LARGE \text{$ \frac{1}{4\pi \times (8.854\times10^{-12}\ C^2/J/m)}\frac{(1.602\times 10^{-19}\ C)^2}{r} $}\\\\\large \text{$ 1.611\times 10^{-18} J=\ $} \LARGE \text{$ \frac{2.307\times 10^{-28} Jm}{r} $}\\\\\large \text{$ r=1.43\times10^{-10}\ m $}\\\\\large \text{$ r=0.143\ nm $}[/tex]
Rounded to three significant figures, the distance between the ions is 0.143 nanometers.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.