Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
0.143 nm
Explanation:
The Coulomb potential energy between two charged particles can be found with:
[tex]\large \text{$ U=\ $} \LARGE \text{$ \frac{1}{4\pi \epsilon_0}\frac{q_1 q_2}{r} $}[/tex]
where
- U is the electric potential energy
- ε₀ is the vacuum permittivity (8.854×10⁻¹² C²/J/m)
- q₁ and q₂ are the charges of the particles
- r is the distance between the particles
Plug in values and solve for the distance r.
[tex]\large \text{$ U=\ $} \LARGE \text{$ \frac{1}{4\pi \epsilon_0}\frac{q_1 q_2}{r} $}\\\\\large \text{$ 970\frac{kJ}{mol}\times\frac{1\ mol}{6.02\times 10^{23}}\times\frac{1000 J}{kJ} =\ $} \LARGE \text{$ \frac{1}{4\pi \times (8.854\times10^{-12}\ C^2/J/m)}\frac{(1.602\times 10^{-19}\ C)^2}{r} $}\\\\\large \text{$ 1.611\times 10^{-18} J=\ $} \LARGE \text{$ \frac{2.307\times 10^{-28} Jm}{r} $}\\\\\large \text{$ r=1.43\times10^{-10}\ m $}\\\\\large \text{$ r=0.143\ nm $}[/tex]
Rounded to three significant figures, the distance between the ions is 0.143 nanometers.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.