At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, let's solve this step by step using the continuous compound interest formula. The continuous compound interest formula is given by:
[tex]\[ A = P \times e^{rt} \][/tex]
where:
- [tex]\( A \)[/tex] is the final amount after time [tex]\( t \)[/tex]
- [tex]\( P \)[/tex] is the principal amount (initial investment)
- [tex]\( r \)[/tex] is the annual interest rate (as a decimal)
- [tex]\( t \)[/tex] is the time the money is invested for, in years
- [tex]\( e \)[/tex] is the base of the natural logarithm (approximately equal to 2.71828)
Given values:
- [tex]\( A = 19,107 \)[/tex] (final amount)
- [tex]\( P = 12,800 \)[/tex] (principal)
- [tex]\( t = 72 \)[/tex] months. Since [tex]\( t \)[/tex] has to be in years, we convert months to years: [tex]\( t = \frac{72}{12} = 6 \)[/tex] years
We need to find the annual interest rate [tex]\( r \)[/tex]. To do this, let's manipulate the formula to solve for [tex]\( r \)[/tex]:
1. Start with the continuous compound interest formula:
[tex]\[ A = P \times e^{rt} \][/tex]
2. Divide both sides by [tex]\( P \)[/tex]:
[tex]\[ \frac{A}{P} = e^{rt} \][/tex]
3. Take the natural logarithm (ln) of both sides to isolate [tex]\( rt \)[/tex]:
[tex]\[ \ln\left(\frac{A}{P}\right) = rt \][/tex]
4. Solve for [tex]\( r \)[/tex] by dividing both sides by [tex]\( t \)[/tex]:
[tex]\[ r = \frac{\ln\left(\frac{A}{P}\right)}{t} \][/tex]
Now substitute the known values into the equation:
1. Calculate [tex]\( \frac{A}{P} \)[/tex]:
[tex]\[ \frac{19,107}{12,800} \approx 1.492734375 \][/tex]
2. Take the natural logarithm of this value:
[tex]\[ \ln(1.492734375) \approx 0.40060958971176 \][/tex]
3. Divide by [tex]\( t \)[/tex]:
[tex]\[ r = \frac{\ln(1.492734375)}{6} \approx \frac{0.40060958971176}{6} \approx 0.06676826485529448 \][/tex]
Thus, the annual interest rate [tex]\( r \)[/tex] is approximately 0.066768 (as a decimal).
To express [tex]\( r \)[/tex] as a percentage, we multiply by 100:
[tex]\[ r \approx 0.066768 \times 100 = 6.676826485529448\% \][/tex]
Rounded to three decimal places:
[tex]\[ r \approx 6.677\% \][/tex]
So, the interest rate is approximately 6.677%.
[tex]\[ A = P \times e^{rt} \][/tex]
where:
- [tex]\( A \)[/tex] is the final amount after time [tex]\( t \)[/tex]
- [tex]\( P \)[/tex] is the principal amount (initial investment)
- [tex]\( r \)[/tex] is the annual interest rate (as a decimal)
- [tex]\( t \)[/tex] is the time the money is invested for, in years
- [tex]\( e \)[/tex] is the base of the natural logarithm (approximately equal to 2.71828)
Given values:
- [tex]\( A = 19,107 \)[/tex] (final amount)
- [tex]\( P = 12,800 \)[/tex] (principal)
- [tex]\( t = 72 \)[/tex] months. Since [tex]\( t \)[/tex] has to be in years, we convert months to years: [tex]\( t = \frac{72}{12} = 6 \)[/tex] years
We need to find the annual interest rate [tex]\( r \)[/tex]. To do this, let's manipulate the formula to solve for [tex]\( r \)[/tex]:
1. Start with the continuous compound interest formula:
[tex]\[ A = P \times e^{rt} \][/tex]
2. Divide both sides by [tex]\( P \)[/tex]:
[tex]\[ \frac{A}{P} = e^{rt} \][/tex]
3. Take the natural logarithm (ln) of both sides to isolate [tex]\( rt \)[/tex]:
[tex]\[ \ln\left(\frac{A}{P}\right) = rt \][/tex]
4. Solve for [tex]\( r \)[/tex] by dividing both sides by [tex]\( t \)[/tex]:
[tex]\[ r = \frac{\ln\left(\frac{A}{P}\right)}{t} \][/tex]
Now substitute the known values into the equation:
1. Calculate [tex]\( \frac{A}{P} \)[/tex]:
[tex]\[ \frac{19,107}{12,800} \approx 1.492734375 \][/tex]
2. Take the natural logarithm of this value:
[tex]\[ \ln(1.492734375) \approx 0.40060958971176 \][/tex]
3. Divide by [tex]\( t \)[/tex]:
[tex]\[ r = \frac{\ln(1.492734375)}{6} \approx \frac{0.40060958971176}{6} \approx 0.06676826485529448 \][/tex]
Thus, the annual interest rate [tex]\( r \)[/tex] is approximately 0.066768 (as a decimal).
To express [tex]\( r \)[/tex] as a percentage, we multiply by 100:
[tex]\[ r \approx 0.066768 \times 100 = 6.676826485529448\% \][/tex]
Rounded to three decimal places:
[tex]\[ r \approx 6.677\% \][/tex]
So, the interest rate is approximately 6.677%.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.