Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let's solve this step by step using the continuous compound interest formula. The continuous compound interest formula is given by:
[tex]\[ A = P \times e^{rt} \][/tex]
where:
- [tex]\( A \)[/tex] is the final amount after time [tex]\( t \)[/tex]
- [tex]\( P \)[/tex] is the principal amount (initial investment)
- [tex]\( r \)[/tex] is the annual interest rate (as a decimal)
- [tex]\( t \)[/tex] is the time the money is invested for, in years
- [tex]\( e \)[/tex] is the base of the natural logarithm (approximately equal to 2.71828)
Given values:
- [tex]\( A = 19,107 \)[/tex] (final amount)
- [tex]\( P = 12,800 \)[/tex] (principal)
- [tex]\( t = 72 \)[/tex] months. Since [tex]\( t \)[/tex] has to be in years, we convert months to years: [tex]\( t = \frac{72}{12} = 6 \)[/tex] years
We need to find the annual interest rate [tex]\( r \)[/tex]. To do this, let's manipulate the formula to solve for [tex]\( r \)[/tex]:
1. Start with the continuous compound interest formula:
[tex]\[ A = P \times e^{rt} \][/tex]
2. Divide both sides by [tex]\( P \)[/tex]:
[tex]\[ \frac{A}{P} = e^{rt} \][/tex]
3. Take the natural logarithm (ln) of both sides to isolate [tex]\( rt \)[/tex]:
[tex]\[ \ln\left(\frac{A}{P}\right) = rt \][/tex]
4. Solve for [tex]\( r \)[/tex] by dividing both sides by [tex]\( t \)[/tex]:
[tex]\[ r = \frac{\ln\left(\frac{A}{P}\right)}{t} \][/tex]
Now substitute the known values into the equation:
1. Calculate [tex]\( \frac{A}{P} \)[/tex]:
[tex]\[ \frac{19,107}{12,800} \approx 1.492734375 \][/tex]
2. Take the natural logarithm of this value:
[tex]\[ \ln(1.492734375) \approx 0.40060958971176 \][/tex]
3. Divide by [tex]\( t \)[/tex]:
[tex]\[ r = \frac{\ln(1.492734375)}{6} \approx \frac{0.40060958971176}{6} \approx 0.06676826485529448 \][/tex]
Thus, the annual interest rate [tex]\( r \)[/tex] is approximately 0.066768 (as a decimal).
To express [tex]\( r \)[/tex] as a percentage, we multiply by 100:
[tex]\[ r \approx 0.066768 \times 100 = 6.676826485529448\% \][/tex]
Rounded to three decimal places:
[tex]\[ r \approx 6.677\% \][/tex]
So, the interest rate is approximately 6.677%.
[tex]\[ A = P \times e^{rt} \][/tex]
where:
- [tex]\( A \)[/tex] is the final amount after time [tex]\( t \)[/tex]
- [tex]\( P \)[/tex] is the principal amount (initial investment)
- [tex]\( r \)[/tex] is the annual interest rate (as a decimal)
- [tex]\( t \)[/tex] is the time the money is invested for, in years
- [tex]\( e \)[/tex] is the base of the natural logarithm (approximately equal to 2.71828)
Given values:
- [tex]\( A = 19,107 \)[/tex] (final amount)
- [tex]\( P = 12,800 \)[/tex] (principal)
- [tex]\( t = 72 \)[/tex] months. Since [tex]\( t \)[/tex] has to be in years, we convert months to years: [tex]\( t = \frac{72}{12} = 6 \)[/tex] years
We need to find the annual interest rate [tex]\( r \)[/tex]. To do this, let's manipulate the formula to solve for [tex]\( r \)[/tex]:
1. Start with the continuous compound interest formula:
[tex]\[ A = P \times e^{rt} \][/tex]
2. Divide both sides by [tex]\( P \)[/tex]:
[tex]\[ \frac{A}{P} = e^{rt} \][/tex]
3. Take the natural logarithm (ln) of both sides to isolate [tex]\( rt \)[/tex]:
[tex]\[ \ln\left(\frac{A}{P}\right) = rt \][/tex]
4. Solve for [tex]\( r \)[/tex] by dividing both sides by [tex]\( t \)[/tex]:
[tex]\[ r = \frac{\ln\left(\frac{A}{P}\right)}{t} \][/tex]
Now substitute the known values into the equation:
1. Calculate [tex]\( \frac{A}{P} \)[/tex]:
[tex]\[ \frac{19,107}{12,800} \approx 1.492734375 \][/tex]
2. Take the natural logarithm of this value:
[tex]\[ \ln(1.492734375) \approx 0.40060958971176 \][/tex]
3. Divide by [tex]\( t \)[/tex]:
[tex]\[ r = \frac{\ln(1.492734375)}{6} \approx \frac{0.40060958971176}{6} \approx 0.06676826485529448 \][/tex]
Thus, the annual interest rate [tex]\( r \)[/tex] is approximately 0.066768 (as a decimal).
To express [tex]\( r \)[/tex] as a percentage, we multiply by 100:
[tex]\[ r \approx 0.066768 \times 100 = 6.676826485529448\% \][/tex]
Rounded to three decimal places:
[tex]\[ r \approx 6.677\% \][/tex]
So, the interest rate is approximately 6.677%.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.