Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which statements are correct, let's proceed step-by-step:
1. Understanding the Original Statement:
- The original statement is: "A number is negative if and only if it is less than 0."
- In logical terms, this is [tex]\( p \leftrightarrow q \)[/tex], where:
- [tex]\( p \)[/tex]: A number is negative.
- [tex]\( q \)[/tex]: A number is less than 0.
2. Finding the Inverse:
- The inverse of the statement [tex]\( p \leftrightarrow q \)[/tex] is [tex]\( \sim p \leftrightarrow \sim q \)[/tex].
- [tex]\( \sim p \)[/tex]: A number is not negative.
- [tex]\( \sim q \)[/tex]: A number is not less than 0.
- Hence, the inverse statement is: "A number is not negative if and only if it is not less than 0."
- This can be restated as: "A number is non-negative if and only if it is zero or positive."
3. Evaluating the Truth of the Inverse:
- To determine whether the inverse statement is true, let's examine the conditions:
- If a number is non-negative ([tex]\(\sim p\)[/tex]), it must be either 0 or positive ([tex]\(\sim q\)[/tex]). This is true.
- If a number is zero or positive ([tex]\(\sim q\)[/tex]), it must be non-negative ([tex]\(\sim p\)[/tex]). This is also true.
Therefore, the inverse statement [tex]\( \sim p \leftrightarrow \sim q \)[/tex] is always true.
4. Matching the Correct Answers:
- "The inverse of the statement is true."
- [tex]\( \sim p \leftrightarrow \sim q \)[/tex]
Therefore, the correct answers to the given question are:
- [tex]\( \sim p \leftrightarrow \sim q \)[/tex]
- The inverse of the statement is true.
1. Understanding the Original Statement:
- The original statement is: "A number is negative if and only if it is less than 0."
- In logical terms, this is [tex]\( p \leftrightarrow q \)[/tex], where:
- [tex]\( p \)[/tex]: A number is negative.
- [tex]\( q \)[/tex]: A number is less than 0.
2. Finding the Inverse:
- The inverse of the statement [tex]\( p \leftrightarrow q \)[/tex] is [tex]\( \sim p \leftrightarrow \sim q \)[/tex].
- [tex]\( \sim p \)[/tex]: A number is not negative.
- [tex]\( \sim q \)[/tex]: A number is not less than 0.
- Hence, the inverse statement is: "A number is not negative if and only if it is not less than 0."
- This can be restated as: "A number is non-negative if and only if it is zero or positive."
3. Evaluating the Truth of the Inverse:
- To determine whether the inverse statement is true, let's examine the conditions:
- If a number is non-negative ([tex]\(\sim p\)[/tex]), it must be either 0 or positive ([tex]\(\sim q\)[/tex]). This is true.
- If a number is zero or positive ([tex]\(\sim q\)[/tex]), it must be non-negative ([tex]\(\sim p\)[/tex]). This is also true.
Therefore, the inverse statement [tex]\( \sim p \leftrightarrow \sim q \)[/tex] is always true.
4. Matching the Correct Answers:
- "The inverse of the statement is true."
- [tex]\( \sim p \leftrightarrow \sim q \)[/tex]
Therefore, the correct answers to the given question are:
- [tex]\( \sim p \leftrightarrow \sim q \)[/tex]
- The inverse of the statement is true.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.