Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the expression [tex]\((8 - 3i) - (8 - 3i)(8 + 8i)\)[/tex], we will simplify the components step-by-step.
First, compute the product [tex]\((8 - 3i) \cdot (8 + 8i)\)[/tex]:
1. Apply the distributive property (also known as the FOIL method):
[tex]\[ \begin{align*} (8 - 3i)(8 + 8i) &= 8 \cdot 8 + 8 \cdot 8i - 3i \cdot 8 - 3i \cdot 8i \\ &= 64 + 64i - 24i - 24i^2 \end{align*} \][/tex]
2. Simplify the expression by combining like terms and remembering that [tex]\(i^2 = -1\)[/tex]:
[tex]\[ \begin{align*} 64 + 64i - 24i - 24(-1) &= 64 + 40i + 24 \\ &= 88 + 40i \end{align*} \][/tex]
Now, subtract this product from the original complex number [tex]\((8 - 3i)\)[/tex]:
[tex]\[ (8 - 3i) - (88 + 40i) \][/tex]
3. Distribute the negative sign:
[tex]\[ \begin{align*} (8 - 3i) - (88 + 40i) &= 8 - 3i - 88 - 40i \\ &= 8 - 88 - 3i - 40i \\ &= -80 - 43i \end{align*} \][/tex]
Therefore, the value of the expression [tex]\((8 - 3i) - (8 - 3i)(8 + 8i)\)[/tex] is:
[tex]\[ \boxed{-80 - 43i} \][/tex]
Thus, the correct answer is:
A. [tex]\(-80 - 43i\)[/tex]
First, compute the product [tex]\((8 - 3i) \cdot (8 + 8i)\)[/tex]:
1. Apply the distributive property (also known as the FOIL method):
[tex]\[ \begin{align*} (8 - 3i)(8 + 8i) &= 8 \cdot 8 + 8 \cdot 8i - 3i \cdot 8 - 3i \cdot 8i \\ &= 64 + 64i - 24i - 24i^2 \end{align*} \][/tex]
2. Simplify the expression by combining like terms and remembering that [tex]\(i^2 = -1\)[/tex]:
[tex]\[ \begin{align*} 64 + 64i - 24i - 24(-1) &= 64 + 40i + 24 \\ &= 88 + 40i \end{align*} \][/tex]
Now, subtract this product from the original complex number [tex]\((8 - 3i)\)[/tex]:
[tex]\[ (8 - 3i) - (88 + 40i) \][/tex]
3. Distribute the negative sign:
[tex]\[ \begin{align*} (8 - 3i) - (88 + 40i) &= 8 - 3i - 88 - 40i \\ &= 8 - 88 - 3i - 40i \\ &= -80 - 43i \end{align*} \][/tex]
Therefore, the value of the expression [tex]\((8 - 3i) - (8 - 3i)(8 + 8i)\)[/tex] is:
[tex]\[ \boxed{-80 - 43i} \][/tex]
Thus, the correct answer is:
A. [tex]\(-80 - 43i\)[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.