Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the expression [tex]\((8 - 3i) - (8 - 3i)(8 + 8i)\)[/tex], we will simplify the components step-by-step.
First, compute the product [tex]\((8 - 3i) \cdot (8 + 8i)\)[/tex]:
1. Apply the distributive property (also known as the FOIL method):
[tex]\[ \begin{align*} (8 - 3i)(8 + 8i) &= 8 \cdot 8 + 8 \cdot 8i - 3i \cdot 8 - 3i \cdot 8i \\ &= 64 + 64i - 24i - 24i^2 \end{align*} \][/tex]
2. Simplify the expression by combining like terms and remembering that [tex]\(i^2 = -1\)[/tex]:
[tex]\[ \begin{align*} 64 + 64i - 24i - 24(-1) &= 64 + 40i + 24 \\ &= 88 + 40i \end{align*} \][/tex]
Now, subtract this product from the original complex number [tex]\((8 - 3i)\)[/tex]:
[tex]\[ (8 - 3i) - (88 + 40i) \][/tex]
3. Distribute the negative sign:
[tex]\[ \begin{align*} (8 - 3i) - (88 + 40i) &= 8 - 3i - 88 - 40i \\ &= 8 - 88 - 3i - 40i \\ &= -80 - 43i \end{align*} \][/tex]
Therefore, the value of the expression [tex]\((8 - 3i) - (8 - 3i)(8 + 8i)\)[/tex] is:
[tex]\[ \boxed{-80 - 43i} \][/tex]
Thus, the correct answer is:
A. [tex]\(-80 - 43i\)[/tex]
First, compute the product [tex]\((8 - 3i) \cdot (8 + 8i)\)[/tex]:
1. Apply the distributive property (also known as the FOIL method):
[tex]\[ \begin{align*} (8 - 3i)(8 + 8i) &= 8 \cdot 8 + 8 \cdot 8i - 3i \cdot 8 - 3i \cdot 8i \\ &= 64 + 64i - 24i - 24i^2 \end{align*} \][/tex]
2. Simplify the expression by combining like terms and remembering that [tex]\(i^2 = -1\)[/tex]:
[tex]\[ \begin{align*} 64 + 64i - 24i - 24(-1) &= 64 + 40i + 24 \\ &= 88 + 40i \end{align*} \][/tex]
Now, subtract this product from the original complex number [tex]\((8 - 3i)\)[/tex]:
[tex]\[ (8 - 3i) - (88 + 40i) \][/tex]
3. Distribute the negative sign:
[tex]\[ \begin{align*} (8 - 3i) - (88 + 40i) &= 8 - 3i - 88 - 40i \\ &= 8 - 88 - 3i - 40i \\ &= -80 - 43i \end{align*} \][/tex]
Therefore, the value of the expression [tex]\((8 - 3i) - (8 - 3i)(8 + 8i)\)[/tex] is:
[tex]\[ \boxed{-80 - 43i} \][/tex]
Thus, the correct answer is:
A. [tex]\(-80 - 43i\)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.