At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, let's calculate the coefficient of correlation for the given data step-by-step.
### Step 1: Organize the Data
We have two sets of data:
- Income (RS.): 100, 200, 300, 400, 500, 600
- Weight (Ib): 120, 130, 140, 150, 160, 170
### Step 2: Calculate the Mean of Each Data Set
The mean is calculated by summing up all the values and then dividing by the number of values.
[tex]\[ \text{Mean of Income (RS.)} = \frac{100 + 200 + 300 + 400 + 500 + 600}{6} = \frac{2100}{6} = 350.0 \][/tex]
[tex]\[ \text{Mean of Weight (Ib)} = \frac{120 + 130 + 140 + 150 + 160 + 170}{6} = \frac{870}{6} = 145.0 \][/tex]
### Step 3: Calculate the Deviations from the Mean
Next, we calculate the deviation of each value from the mean.
- Deviations of Income:
- [tex]\(100 - 350 = -250\)[/tex]
- [tex]\(200 - 350 = -150\)[/tex]
- [tex]\(300 - 350 = -50\)[/tex]
- [tex]\(400 - 350 = 50\)[/tex]
- [tex]\(500 - 350 = 150\)[/tex]
- [tex]\(600 - 350 = 250\)[/tex]
- Deviations of Weight:
- [tex]\(120 - 145 = -25\)[/tex]
- [tex]\(130 - 145 = -15\)[/tex]
- [tex]\(140 - 145 = -5\)[/tex]
- [tex]\(150 - 145 = 5\)[/tex]
- [tex]\(160 - 145 = 15\)[/tex]
- [tex]\(170 - 145 = 25\)[/tex]
### Step 4: Calculate the Covariance
The covariance is calculated as the average of the product of the deviations of each pair of values.
[tex]\[ \text{Covariance} = \frac{(-250 \cdot -25) + (-150 \cdot -15) + (-50 \cdot -5) + (50 \cdot 5) + (150 \cdot 15) + (250 \cdot 25)}{6} \][/tex]
[tex]\[ = \frac{6250 + 2250 + 250 + 250 + 2250 + 6250}{6} = \frac{17000}{6} = 2833.33 \][/tex]
### Step 5: Calculate the Standard Deviation of Each Data Set
The standard deviation measures the amount of variation in the data. It is calculated as the square root of the variance.
- Standard Deviation of Income:
[tex]\[ \text{Variance of Income} = \frac{((-250)^2 + (-150)^2 + (-50)^2 + 50^2 + 150^2 + 250^2)}{6} \][/tex]
[tex]\[ = \frac{62500 + 22500 + 2500 + 2500 + 22500 + 62500}{6} = 29166.67 \][/tex]
[tex]\[ \text{Standard Deviation of Income} = \sqrt{29166.67} = 170.78 \][/tex]
- Standard Deviation of Weight:
[tex]\[ \text{Variance of Weight} = \frac{((-25)^2 + (-15)^2 + (-5)^2 + 5^2 + 15^2 + 25^2)}{6} \][/tex]
[tex]\[ = \frac{625 + 225 + 25 + 25 + 225 + 625}{6} = 2250 \][/tex]
[tex]\[ \text{Standard Deviation of Weight} = \sqrt{2250} = 47.43 \][/tex]
### Step 6: Calculate the Correlation Coefficient
The correlation coefficient is given by:
[tex]\[ r = \frac{\text{Covariance}}{(\text{Standard Deviation of Income} \cdot \text{Standard Deviation of Weight})} \][/tex]
[tex]\[ r = \frac{2833.33}{170.78 \cdot 47.43} = 0.35 \][/tex]
### Conclusion
Thus, the coefficient of correlation between income and weight is approximately 0.35, indicating a moderate positive relationship between the two variables.
### Step 1: Organize the Data
We have two sets of data:
- Income (RS.): 100, 200, 300, 400, 500, 600
- Weight (Ib): 120, 130, 140, 150, 160, 170
### Step 2: Calculate the Mean of Each Data Set
The mean is calculated by summing up all the values and then dividing by the number of values.
[tex]\[ \text{Mean of Income (RS.)} = \frac{100 + 200 + 300 + 400 + 500 + 600}{6} = \frac{2100}{6} = 350.0 \][/tex]
[tex]\[ \text{Mean of Weight (Ib)} = \frac{120 + 130 + 140 + 150 + 160 + 170}{6} = \frac{870}{6} = 145.0 \][/tex]
### Step 3: Calculate the Deviations from the Mean
Next, we calculate the deviation of each value from the mean.
- Deviations of Income:
- [tex]\(100 - 350 = -250\)[/tex]
- [tex]\(200 - 350 = -150\)[/tex]
- [tex]\(300 - 350 = -50\)[/tex]
- [tex]\(400 - 350 = 50\)[/tex]
- [tex]\(500 - 350 = 150\)[/tex]
- [tex]\(600 - 350 = 250\)[/tex]
- Deviations of Weight:
- [tex]\(120 - 145 = -25\)[/tex]
- [tex]\(130 - 145 = -15\)[/tex]
- [tex]\(140 - 145 = -5\)[/tex]
- [tex]\(150 - 145 = 5\)[/tex]
- [tex]\(160 - 145 = 15\)[/tex]
- [tex]\(170 - 145 = 25\)[/tex]
### Step 4: Calculate the Covariance
The covariance is calculated as the average of the product of the deviations of each pair of values.
[tex]\[ \text{Covariance} = \frac{(-250 \cdot -25) + (-150 \cdot -15) + (-50 \cdot -5) + (50 \cdot 5) + (150 \cdot 15) + (250 \cdot 25)}{6} \][/tex]
[tex]\[ = \frac{6250 + 2250 + 250 + 250 + 2250 + 6250}{6} = \frac{17000}{6} = 2833.33 \][/tex]
### Step 5: Calculate the Standard Deviation of Each Data Set
The standard deviation measures the amount of variation in the data. It is calculated as the square root of the variance.
- Standard Deviation of Income:
[tex]\[ \text{Variance of Income} = \frac{((-250)^2 + (-150)^2 + (-50)^2 + 50^2 + 150^2 + 250^2)}{6} \][/tex]
[tex]\[ = \frac{62500 + 22500 + 2500 + 2500 + 22500 + 62500}{6} = 29166.67 \][/tex]
[tex]\[ \text{Standard Deviation of Income} = \sqrt{29166.67} = 170.78 \][/tex]
- Standard Deviation of Weight:
[tex]\[ \text{Variance of Weight} = \frac{((-25)^2 + (-15)^2 + (-5)^2 + 5^2 + 15^2 + 25^2)}{6} \][/tex]
[tex]\[ = \frac{625 + 225 + 25 + 25 + 225 + 625}{6} = 2250 \][/tex]
[tex]\[ \text{Standard Deviation of Weight} = \sqrt{2250} = 47.43 \][/tex]
### Step 6: Calculate the Correlation Coefficient
The correlation coefficient is given by:
[tex]\[ r = \frac{\text{Covariance}}{(\text{Standard Deviation of Income} \cdot \text{Standard Deviation of Weight})} \][/tex]
[tex]\[ r = \frac{2833.33}{170.78 \cdot 47.43} = 0.35 \][/tex]
### Conclusion
Thus, the coefficient of correlation between income and weight is approximately 0.35, indicating a moderate positive relationship between the two variables.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.