Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Calculate the coefficient of correlation for the following data.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Income (Rs.) & 100 & 200 & 300 & 400 & 500 & 600 \\
\hline Weight (lbs) & 120 & 130 & 140 & 150 & 160 & 170 \\
\hline
\end{tabular}

Sagot :

Sure, let's calculate the coefficient of correlation for the given data step-by-step.

### Step 1: Organize the Data
We have two sets of data:
- Income (RS.): 100, 200, 300, 400, 500, 600
- Weight (Ib): 120, 130, 140, 150, 160, 170

### Step 2: Calculate the Mean of Each Data Set
The mean is calculated by summing up all the values and then dividing by the number of values.

[tex]\[ \text{Mean of Income (RS.)} = \frac{100 + 200 + 300 + 400 + 500 + 600}{6} = \frac{2100}{6} = 350.0 \][/tex]

[tex]\[ \text{Mean of Weight (Ib)} = \frac{120 + 130 + 140 + 150 + 160 + 170}{6} = \frac{870}{6} = 145.0 \][/tex]

### Step 3: Calculate the Deviations from the Mean
Next, we calculate the deviation of each value from the mean.

- Deviations of Income:
- [tex]\(100 - 350 = -250\)[/tex]
- [tex]\(200 - 350 = -150\)[/tex]
- [tex]\(300 - 350 = -50\)[/tex]
- [tex]\(400 - 350 = 50\)[/tex]
- [tex]\(500 - 350 = 150\)[/tex]
- [tex]\(600 - 350 = 250\)[/tex]

- Deviations of Weight:
- [tex]\(120 - 145 = -25\)[/tex]
- [tex]\(130 - 145 = -15\)[/tex]
- [tex]\(140 - 145 = -5\)[/tex]
- [tex]\(150 - 145 = 5\)[/tex]
- [tex]\(160 - 145 = 15\)[/tex]
- [tex]\(170 - 145 = 25\)[/tex]

### Step 4: Calculate the Covariance
The covariance is calculated as the average of the product of the deviations of each pair of values.

[tex]\[ \text{Covariance} = \frac{(-250 \cdot -25) + (-150 \cdot -15) + (-50 \cdot -5) + (50 \cdot 5) + (150 \cdot 15) + (250 \cdot 25)}{6} \][/tex]
[tex]\[ = \frac{6250 + 2250 + 250 + 250 + 2250 + 6250}{6} = \frac{17000}{6} = 2833.33 \][/tex]

### Step 5: Calculate the Standard Deviation of Each Data Set
The standard deviation measures the amount of variation in the data. It is calculated as the square root of the variance.

- Standard Deviation of Income:
[tex]\[ \text{Variance of Income} = \frac{((-250)^2 + (-150)^2 + (-50)^2 + 50^2 + 150^2 + 250^2)}{6} \][/tex]
[tex]\[ = \frac{62500 + 22500 + 2500 + 2500 + 22500 + 62500}{6} = 29166.67 \][/tex]
[tex]\[ \text{Standard Deviation of Income} = \sqrt{29166.67} = 170.78 \][/tex]

- Standard Deviation of Weight:
[tex]\[ \text{Variance of Weight} = \frac{((-25)^2 + (-15)^2 + (-5)^2 + 5^2 + 15^2 + 25^2)}{6} \][/tex]
[tex]\[ = \frac{625 + 225 + 25 + 25 + 225 + 625}{6} = 2250 \][/tex]
[tex]\[ \text{Standard Deviation of Weight} = \sqrt{2250} = 47.43 \][/tex]

### Step 6: Calculate the Correlation Coefficient
The correlation coefficient is given by:

[tex]\[ r = \frac{\text{Covariance}}{(\text{Standard Deviation of Income} \cdot \text{Standard Deviation of Weight})} \][/tex]
[tex]\[ r = \frac{2833.33}{170.78 \cdot 47.43} = 0.35 \][/tex]

### Conclusion
Thus, the coefficient of correlation between income and weight is approximately 0.35, indicating a moderate positive relationship between the two variables.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.