Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which reflection will produce the image of the point [tex]\((0, k)\)[/tex] at the same coordinates, let's analyze the effect of each reflection option on the point:
1. Reflection across the [tex]\( x \)[/tex]-axis:
The reflection of a point [tex]\((x, y)\)[/tex] across the [tex]\( x \)[/tex]-axis changes the sign of the [tex]\( y \)[/tex]-coordinate. Thus, the reflection of [tex]\((0, k)\)[/tex] across the [tex]\( x \)[/tex]-axis is:
[tex]\[ (0, k) \rightarrow (0, -k) \][/tex]
2. Reflection across the [tex]\( y \)[/tex]-axis:
The reflection of a point [tex]\((x, y)\)[/tex] across the [tex]\( y \)[/tex]-axis changes the sign of the [tex]\( x \)[/tex]-coordinate. Thus, the reflection of [tex]\((0, k)\)[/tex] across the [tex]\( y \)[/tex]-axis is:
[tex]\[ (0, k) \rightarrow (0, k) \][/tex]
3. Reflection across the line [tex]\( y = x \)[/tex]:
The reflection of a point [tex]\((x, y)\)[/tex] across the line [tex]\( y = x \)[/tex] swaps the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] coordinates. Thus, the reflection of [tex]\((0, k)\)[/tex] across the line [tex]\( y = x \)[/tex] is:
[tex]\[ (0, k) \rightarrow (k, 0) \][/tex]
4. Reflection across the line [tex]\( y = -x \)[/tex]:
The reflection of a point [tex]\((x, y)\)[/tex] across the line [tex]\( y = -x \)[/tex] swaps the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] coordinates and changes their signs. Thus, the reflection of [tex]\((0, k)\)[/tex] across the line [tex]\( y = -x \)[/tex] is:
[tex]\[ (0, k) \rightarrow (-k, 0) \][/tex]
By analyzing each reflection, we see that only the reflection across the [tex]\( y \)[/tex]-axis leaves the point [tex]\((0, k)\)[/tex] unchanged at its original coordinates. Therefore, the correct transformation is the reflection of the point across the [tex]\( y \)[/tex]-axis.
The answer is:
[tex]\[ \boxed{2} \][/tex]
1. Reflection across the [tex]\( x \)[/tex]-axis:
The reflection of a point [tex]\((x, y)\)[/tex] across the [tex]\( x \)[/tex]-axis changes the sign of the [tex]\( y \)[/tex]-coordinate. Thus, the reflection of [tex]\((0, k)\)[/tex] across the [tex]\( x \)[/tex]-axis is:
[tex]\[ (0, k) \rightarrow (0, -k) \][/tex]
2. Reflection across the [tex]\( y \)[/tex]-axis:
The reflection of a point [tex]\((x, y)\)[/tex] across the [tex]\( y \)[/tex]-axis changes the sign of the [tex]\( x \)[/tex]-coordinate. Thus, the reflection of [tex]\((0, k)\)[/tex] across the [tex]\( y \)[/tex]-axis is:
[tex]\[ (0, k) \rightarrow (0, k) \][/tex]
3. Reflection across the line [tex]\( y = x \)[/tex]:
The reflection of a point [tex]\((x, y)\)[/tex] across the line [tex]\( y = x \)[/tex] swaps the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] coordinates. Thus, the reflection of [tex]\((0, k)\)[/tex] across the line [tex]\( y = x \)[/tex] is:
[tex]\[ (0, k) \rightarrow (k, 0) \][/tex]
4. Reflection across the line [tex]\( y = -x \)[/tex]:
The reflection of a point [tex]\((x, y)\)[/tex] across the line [tex]\( y = -x \)[/tex] swaps the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] coordinates and changes their signs. Thus, the reflection of [tex]\((0, k)\)[/tex] across the line [tex]\( y = -x \)[/tex] is:
[tex]\[ (0, k) \rightarrow (-k, 0) \][/tex]
By analyzing each reflection, we see that only the reflection across the [tex]\( y \)[/tex]-axis leaves the point [tex]\((0, k)\)[/tex] unchanged at its original coordinates. Therefore, the correct transformation is the reflection of the point across the [tex]\( y \)[/tex]-axis.
The answer is:
[tex]\[ \boxed{2} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.