Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure! Let's solve the problem step-by-step using the Product Rule of Logarithms.
The Product Rule of Logarithms states that for any positive numbers [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \ln(x \cdot y) = \ln(x) + \ln(y) \][/tex]
We need to apply this rule to the expression [tex]\( \ln(6a + 9b) \)[/tex].
First, let's factor the expression inside the logarithm:
[tex]\[ 6a + 9b \][/tex]
Notice that we can factor out a 3 from both terms:
[tex]\[ 6a + 9b = 3(2a + 3b) \][/tex]
Now, we have:
[tex]\[ \ln(6a + 9b) = \ln(3(2a + 3b)) \][/tex]
According to the Product Rule of Logarithms, we can separate the logarithm of the product into the sum of logarithms:
[tex]\[ \ln(3(2a + 3b)) = \ln(3) + \ln(2a + 3b) \][/tex]
So, the completely expanded expression equivalent to [tex]\( \ln(6a + 9b) \)[/tex] is:
[tex]\[ \boxed{\text{In}(6a + 9b) = \text{In}(3) + \text{In}(2a + 3b)} \][/tex]
The Product Rule of Logarithms states that for any positive numbers [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \ln(x \cdot y) = \ln(x) + \ln(y) \][/tex]
We need to apply this rule to the expression [tex]\( \ln(6a + 9b) \)[/tex].
First, let's factor the expression inside the logarithm:
[tex]\[ 6a + 9b \][/tex]
Notice that we can factor out a 3 from both terms:
[tex]\[ 6a + 9b = 3(2a + 3b) \][/tex]
Now, we have:
[tex]\[ \ln(6a + 9b) = \ln(3(2a + 3b)) \][/tex]
According to the Product Rule of Logarithms, we can separate the logarithm of the product into the sum of logarithms:
[tex]\[ \ln(3(2a + 3b)) = \ln(3) + \ln(2a + 3b) \][/tex]
So, the completely expanded expression equivalent to [tex]\( \ln(6a + 9b) \)[/tex] is:
[tex]\[ \boxed{\text{In}(6a + 9b) = \text{In}(3) + \text{In}(2a + 3b)} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.