Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure! Let's solve the problem step-by-step using the Product Rule of Logarithms.
The Product Rule of Logarithms states that for any positive numbers [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \ln(x \cdot y) = \ln(x) + \ln(y) \][/tex]
We need to apply this rule to the expression [tex]\( \ln(6a + 9b) \)[/tex].
First, let's factor the expression inside the logarithm:
[tex]\[ 6a + 9b \][/tex]
Notice that we can factor out a 3 from both terms:
[tex]\[ 6a + 9b = 3(2a + 3b) \][/tex]
Now, we have:
[tex]\[ \ln(6a + 9b) = \ln(3(2a + 3b)) \][/tex]
According to the Product Rule of Logarithms, we can separate the logarithm of the product into the sum of logarithms:
[tex]\[ \ln(3(2a + 3b)) = \ln(3) + \ln(2a + 3b) \][/tex]
So, the completely expanded expression equivalent to [tex]\( \ln(6a + 9b) \)[/tex] is:
[tex]\[ \boxed{\text{In}(6a + 9b) = \text{In}(3) + \text{In}(2a + 3b)} \][/tex]
The Product Rule of Logarithms states that for any positive numbers [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \ln(x \cdot y) = \ln(x) + \ln(y) \][/tex]
We need to apply this rule to the expression [tex]\( \ln(6a + 9b) \)[/tex].
First, let's factor the expression inside the logarithm:
[tex]\[ 6a + 9b \][/tex]
Notice that we can factor out a 3 from both terms:
[tex]\[ 6a + 9b = 3(2a + 3b) \][/tex]
Now, we have:
[tex]\[ \ln(6a + 9b) = \ln(3(2a + 3b)) \][/tex]
According to the Product Rule of Logarithms, we can separate the logarithm of the product into the sum of logarithms:
[tex]\[ \ln(3(2a + 3b)) = \ln(3) + \ln(2a + 3b) \][/tex]
So, the completely expanded expression equivalent to [tex]\( \ln(6a + 9b) \)[/tex] is:
[tex]\[ \boxed{\text{In}(6a + 9b) = \text{In}(3) + \text{In}(2a + 3b)} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.