Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To understand the behavior and range of the exponential function [tex]\( k(x) \)[/tex], let's analyze the given information step-by-step:
1. Horizontal Asymptote:
We are told that the function [tex]\( k(x) \)[/tex] approaches a horizontal asymptote at [tex]\( y = 3 \)[/tex]. This means that as [tex]\( x \)[/tex] increases (towards positive infinity or negative infinity), the value of [tex]\( k(x) \)[/tex] will get closer and closer to 3 but never actually reach 3.
2. Exponential Growth:
The function [tex]\( k(x) \)[/tex] increases at a rate of [tex]\( 75 \% \)[/tex] and passes through the point [tex]\( (0, 9) \)[/tex]. An exponential function with this growth rate will grow rapidly away from its horizontal asymptote. Since it passes through [tex]\( (0, 9) \)[/tex], we know [tex]\( k(0) = 9 \)[/tex].
3. Behavior Based on the Starting Point and Asymptote:
- At [tex]\( x = 0 \)[/tex], [tex]\( k(x) = 9 \)[/tex].
- As [tex]\( x \)[/tex] increases, since [tex]\( k(x) \)[/tex] is an increasing function that approaches but does not cross the asymptote [tex]\( y = 3 \)[/tex], the values of [tex]\( k(x) \)[/tex] will get closer to 3 from above.
4. Range Determination:
Given that the function is always above the horizontal asymptote [tex]\( y = 3 \)[/tex] and it continues to increase without bound:
- The lowest possible value [tex]\( k(x) \)[/tex] can approach is [tex]\( y = 3 \)[/tex], but it will never actually reach 3.
- Thus, the values of [tex]\( k(x) \)[/tex] will be greater than 3.
- As [tex]\( x \)[/tex] continues to increase, [tex]\( k(x) \)[/tex] will also increase towards infinity.
Therefore, the range of the function [tex]\( k(x) \)[/tex] includes all [tex]\( y \)[/tex]-values greater than 3. We express this as the interval from 3 to infinity, excluding 3 itself.
Thus, the range of the function [tex]\( k(x) \)[/tex] is:
[tex]\[ (3, \infty) \][/tex]
So the correct answer is:
[tex]\[ (3, \infty) \][/tex]
1. Horizontal Asymptote:
We are told that the function [tex]\( k(x) \)[/tex] approaches a horizontal asymptote at [tex]\( y = 3 \)[/tex]. This means that as [tex]\( x \)[/tex] increases (towards positive infinity or negative infinity), the value of [tex]\( k(x) \)[/tex] will get closer and closer to 3 but never actually reach 3.
2. Exponential Growth:
The function [tex]\( k(x) \)[/tex] increases at a rate of [tex]\( 75 \% \)[/tex] and passes through the point [tex]\( (0, 9) \)[/tex]. An exponential function with this growth rate will grow rapidly away from its horizontal asymptote. Since it passes through [tex]\( (0, 9) \)[/tex], we know [tex]\( k(0) = 9 \)[/tex].
3. Behavior Based on the Starting Point and Asymptote:
- At [tex]\( x = 0 \)[/tex], [tex]\( k(x) = 9 \)[/tex].
- As [tex]\( x \)[/tex] increases, since [tex]\( k(x) \)[/tex] is an increasing function that approaches but does not cross the asymptote [tex]\( y = 3 \)[/tex], the values of [tex]\( k(x) \)[/tex] will get closer to 3 from above.
4. Range Determination:
Given that the function is always above the horizontal asymptote [tex]\( y = 3 \)[/tex] and it continues to increase without bound:
- The lowest possible value [tex]\( k(x) \)[/tex] can approach is [tex]\( y = 3 \)[/tex], but it will never actually reach 3.
- Thus, the values of [tex]\( k(x) \)[/tex] will be greater than 3.
- As [tex]\( x \)[/tex] continues to increase, [tex]\( k(x) \)[/tex] will also increase towards infinity.
Therefore, the range of the function [tex]\( k(x) \)[/tex] includes all [tex]\( y \)[/tex]-values greater than 3. We express this as the interval from 3 to infinity, excluding 3 itself.
Thus, the range of the function [tex]\( k(x) \)[/tex] is:
[tex]\[ (3, \infty) \][/tex]
So the correct answer is:
[tex]\[ (3, \infty) \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.