Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To understand the behavior and range of the exponential function [tex]\( k(x) \)[/tex], let's analyze the given information step-by-step:
1. Horizontal Asymptote:
We are told that the function [tex]\( k(x) \)[/tex] approaches a horizontal asymptote at [tex]\( y = 3 \)[/tex]. This means that as [tex]\( x \)[/tex] increases (towards positive infinity or negative infinity), the value of [tex]\( k(x) \)[/tex] will get closer and closer to 3 but never actually reach 3.
2. Exponential Growth:
The function [tex]\( k(x) \)[/tex] increases at a rate of [tex]\( 75 \% \)[/tex] and passes through the point [tex]\( (0, 9) \)[/tex]. An exponential function with this growth rate will grow rapidly away from its horizontal asymptote. Since it passes through [tex]\( (0, 9) \)[/tex], we know [tex]\( k(0) = 9 \)[/tex].
3. Behavior Based on the Starting Point and Asymptote:
- At [tex]\( x = 0 \)[/tex], [tex]\( k(x) = 9 \)[/tex].
- As [tex]\( x \)[/tex] increases, since [tex]\( k(x) \)[/tex] is an increasing function that approaches but does not cross the asymptote [tex]\( y = 3 \)[/tex], the values of [tex]\( k(x) \)[/tex] will get closer to 3 from above.
4. Range Determination:
Given that the function is always above the horizontal asymptote [tex]\( y = 3 \)[/tex] and it continues to increase without bound:
- The lowest possible value [tex]\( k(x) \)[/tex] can approach is [tex]\( y = 3 \)[/tex], but it will never actually reach 3.
- Thus, the values of [tex]\( k(x) \)[/tex] will be greater than 3.
- As [tex]\( x \)[/tex] continues to increase, [tex]\( k(x) \)[/tex] will also increase towards infinity.
Therefore, the range of the function [tex]\( k(x) \)[/tex] includes all [tex]\( y \)[/tex]-values greater than 3. We express this as the interval from 3 to infinity, excluding 3 itself.
Thus, the range of the function [tex]\( k(x) \)[/tex] is:
[tex]\[ (3, \infty) \][/tex]
So the correct answer is:
[tex]\[ (3, \infty) \][/tex]
1. Horizontal Asymptote:
We are told that the function [tex]\( k(x) \)[/tex] approaches a horizontal asymptote at [tex]\( y = 3 \)[/tex]. This means that as [tex]\( x \)[/tex] increases (towards positive infinity or negative infinity), the value of [tex]\( k(x) \)[/tex] will get closer and closer to 3 but never actually reach 3.
2. Exponential Growth:
The function [tex]\( k(x) \)[/tex] increases at a rate of [tex]\( 75 \% \)[/tex] and passes through the point [tex]\( (0, 9) \)[/tex]. An exponential function with this growth rate will grow rapidly away from its horizontal asymptote. Since it passes through [tex]\( (0, 9) \)[/tex], we know [tex]\( k(0) = 9 \)[/tex].
3. Behavior Based on the Starting Point and Asymptote:
- At [tex]\( x = 0 \)[/tex], [tex]\( k(x) = 9 \)[/tex].
- As [tex]\( x \)[/tex] increases, since [tex]\( k(x) \)[/tex] is an increasing function that approaches but does not cross the asymptote [tex]\( y = 3 \)[/tex], the values of [tex]\( k(x) \)[/tex] will get closer to 3 from above.
4. Range Determination:
Given that the function is always above the horizontal asymptote [tex]\( y = 3 \)[/tex] and it continues to increase without bound:
- The lowest possible value [tex]\( k(x) \)[/tex] can approach is [tex]\( y = 3 \)[/tex], but it will never actually reach 3.
- Thus, the values of [tex]\( k(x) \)[/tex] will be greater than 3.
- As [tex]\( x \)[/tex] continues to increase, [tex]\( k(x) \)[/tex] will also increase towards infinity.
Therefore, the range of the function [tex]\( k(x) \)[/tex] includes all [tex]\( y \)[/tex]-values greater than 3. We express this as the interval from 3 to infinity, excluding 3 itself.
Thus, the range of the function [tex]\( k(x) \)[/tex] is:
[tex]\[ (3, \infty) \][/tex]
So the correct answer is:
[tex]\[ (3, \infty) \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.