Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To understand the behavior and range of the exponential function [tex]\( k(x) \)[/tex], let's analyze the given information step-by-step:
1. Horizontal Asymptote:
We are told that the function [tex]\( k(x) \)[/tex] approaches a horizontal asymptote at [tex]\( y = 3 \)[/tex]. This means that as [tex]\( x \)[/tex] increases (towards positive infinity or negative infinity), the value of [tex]\( k(x) \)[/tex] will get closer and closer to 3 but never actually reach 3.
2. Exponential Growth:
The function [tex]\( k(x) \)[/tex] increases at a rate of [tex]\( 75 \% \)[/tex] and passes through the point [tex]\( (0, 9) \)[/tex]. An exponential function with this growth rate will grow rapidly away from its horizontal asymptote. Since it passes through [tex]\( (0, 9) \)[/tex], we know [tex]\( k(0) = 9 \)[/tex].
3. Behavior Based on the Starting Point and Asymptote:
- At [tex]\( x = 0 \)[/tex], [tex]\( k(x) = 9 \)[/tex].
- As [tex]\( x \)[/tex] increases, since [tex]\( k(x) \)[/tex] is an increasing function that approaches but does not cross the asymptote [tex]\( y = 3 \)[/tex], the values of [tex]\( k(x) \)[/tex] will get closer to 3 from above.
4. Range Determination:
Given that the function is always above the horizontal asymptote [tex]\( y = 3 \)[/tex] and it continues to increase without bound:
- The lowest possible value [tex]\( k(x) \)[/tex] can approach is [tex]\( y = 3 \)[/tex], but it will never actually reach 3.
- Thus, the values of [tex]\( k(x) \)[/tex] will be greater than 3.
- As [tex]\( x \)[/tex] continues to increase, [tex]\( k(x) \)[/tex] will also increase towards infinity.
Therefore, the range of the function [tex]\( k(x) \)[/tex] includes all [tex]\( y \)[/tex]-values greater than 3. We express this as the interval from 3 to infinity, excluding 3 itself.
Thus, the range of the function [tex]\( k(x) \)[/tex] is:
[tex]\[ (3, \infty) \][/tex]
So the correct answer is:
[tex]\[ (3, \infty) \][/tex]
1. Horizontal Asymptote:
We are told that the function [tex]\( k(x) \)[/tex] approaches a horizontal asymptote at [tex]\( y = 3 \)[/tex]. This means that as [tex]\( x \)[/tex] increases (towards positive infinity or negative infinity), the value of [tex]\( k(x) \)[/tex] will get closer and closer to 3 but never actually reach 3.
2. Exponential Growth:
The function [tex]\( k(x) \)[/tex] increases at a rate of [tex]\( 75 \% \)[/tex] and passes through the point [tex]\( (0, 9) \)[/tex]. An exponential function with this growth rate will grow rapidly away from its horizontal asymptote. Since it passes through [tex]\( (0, 9) \)[/tex], we know [tex]\( k(0) = 9 \)[/tex].
3. Behavior Based on the Starting Point and Asymptote:
- At [tex]\( x = 0 \)[/tex], [tex]\( k(x) = 9 \)[/tex].
- As [tex]\( x \)[/tex] increases, since [tex]\( k(x) \)[/tex] is an increasing function that approaches but does not cross the asymptote [tex]\( y = 3 \)[/tex], the values of [tex]\( k(x) \)[/tex] will get closer to 3 from above.
4. Range Determination:
Given that the function is always above the horizontal asymptote [tex]\( y = 3 \)[/tex] and it continues to increase without bound:
- The lowest possible value [tex]\( k(x) \)[/tex] can approach is [tex]\( y = 3 \)[/tex], but it will never actually reach 3.
- Thus, the values of [tex]\( k(x) \)[/tex] will be greater than 3.
- As [tex]\( x \)[/tex] continues to increase, [tex]\( k(x) \)[/tex] will also increase towards infinity.
Therefore, the range of the function [tex]\( k(x) \)[/tex] includes all [tex]\( y \)[/tex]-values greater than 3. We express this as the interval from 3 to infinity, excluding 3 itself.
Thus, the range of the function [tex]\( k(x) \)[/tex] is:
[tex]\[ (3, \infty) \][/tex]
So the correct answer is:
[tex]\[ (3, \infty) \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.