Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

At what nominal annual rate of interest will money double itself in six years and six months if compounded semi-annually?

Sagot :

Let's solve the problem step-by-step to find the nominal annual rate of interest at which money will double itself in six years and six months, given it is compounded semi-annually.

### Step-by-Step Solution:

1. Identify the Variables:
- Principal (P): The initial amount of money invested or loaned, which we can assume to be 1 unit of currency for ease.
- Final Amount (A): The amount of money that the investment or loan grows to, which in this case is double the principal. Thus, [tex]\( A = 2 \times P \)[/tex].
- Time (t): The time period for which the money is invested, which is six years and six months, or 6.5 years.
- Compounding Frequency (n): The number of times interest is compounded per year. Since it is compounded semi-annually, [tex]\( n = 2 \)[/tex].

2. Compound Interest Formula:
The formula to calculate the amount [tex]\( A \)[/tex] after time [tex]\( t \)[/tex] with a principal [tex]\( P \)[/tex], at an annual nominal interest rate [tex]\( r \)[/tex], compounded [tex]\( n \)[/tex] times per year is:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]

3. Plug in the Known Values:
- [tex]\( A = 2P \)[/tex]
- [tex]\( P = 1 \)[/tex]
- [tex]\( t = 6.5 \)[/tex]
- [tex]\( n = 2 \)[/tex]

Now the equation looks like this:
[tex]\[ 2 = \left(1 + \frac{r}{2}\right)^{2 \times 6.5} \][/tex]
[tex]\[ 2 = \left(1 + \frac{r}{2}\right)^{13} \][/tex]

4. Solve for [tex]\( r \)[/tex]:
To isolate [tex]\( r \)[/tex], take the 13th root of both sides to get rid of the exponent:
[tex]\[ \left(1 + \frac{r}{2}\right) = 2^{\frac{1}{13}} \][/tex]
[tex]\[ 1 + \frac{r}{2} \approx 1.0547660764816467 \][/tex]

5. Isolate [tex]\( r \)[/tex]:
Subtract 1 from both sides:
[tex]\[ \frac{r}{2} \approx 1.0547660764816467 - 1 \][/tex]
[tex]\[ \frac{r}{2} \approx 0.0547660764816467 \][/tex]

Multiply both sides by 2:
[tex]\[ r \approx 2 \times 0.0547660764816467 \][/tex]
[tex]\[ r \approx 0.10953215296329333 \][/tex]

Therefore, the nominal annual rate of interest needed for the investment to double itself in six years and six months, if compounded semi-annually, is approximately 10.95%.