Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's go through the problem step-by-step to calculate the volume of a sphere with diameter 11.4 meters using the given value of π (pi) as 3.14, and then round the answer to the nearest tenth.
### Step 1: Understanding the Problem
We are given:
- The diameter [tex]\( D \)[/tex] of the sphere is 11.4 meters.
- We need to use π ≈ 3.14.
- We need to calculate the volume [tex]\( V \)[/tex] of the sphere.
- Finally, round the volume to the nearest tenth.
### Step 2: Find the Radius
The formula for the volume of a sphere is given by:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Where [tex]\( r \)[/tex] is the radius of the sphere. Since [tex]\( D \)[/tex] is the diameter, and the radius is half of the diameter, we have:
[tex]\[ r = \frac{D}{2} \][/tex]
Given that [tex]\( D = 11.4 \)[/tex] meters:
[tex]\[ r = \frac{11.4}{2} \][/tex]
[tex]\[ r = 5.7 \text{ meters} \][/tex]
### Step 3: Calculate the Volume
Now, we plug the radius into the volume formula:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Substitute [tex]\( r = 5.7 \)[/tex] meters and π ≈ 3.14:
[tex]\[ V = \frac{4}{3} \times 3.14 \times (5.7)^3 \][/tex]
First, calculate [tex]\( (5.7)^3 \)[/tex]:
[tex]\[ (5.7)^3 = 5.7 \times 5.7 \times 5.7 = 185.193 \][/tex]
Next, multiply by π:
[tex]\[ 3.14 \times 185.193 = 581.00722 \][/tex]
Then, multiply by [tex]\(\frac{4}{3}\)[/tex]:
[tex]\[ \frac{4}{3} \times 581.00722 = 774.6762933 \][/tex]
### Step 4: Round to the Nearest Tenth
To round 774.6762933 to the nearest tenth, we look at the first decimal place. Since this is 7, we round up:
[tex]\[ V \approx 775.3 \][/tex]
### Conclusion
The volume of the sphere, rounded to the nearest tenth, is [tex]\( 775.3 \)[/tex] cubic meters.
### Step 1: Understanding the Problem
We are given:
- The diameter [tex]\( D \)[/tex] of the sphere is 11.4 meters.
- We need to use π ≈ 3.14.
- We need to calculate the volume [tex]\( V \)[/tex] of the sphere.
- Finally, round the volume to the nearest tenth.
### Step 2: Find the Radius
The formula for the volume of a sphere is given by:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Where [tex]\( r \)[/tex] is the radius of the sphere. Since [tex]\( D \)[/tex] is the diameter, and the radius is half of the diameter, we have:
[tex]\[ r = \frac{D}{2} \][/tex]
Given that [tex]\( D = 11.4 \)[/tex] meters:
[tex]\[ r = \frac{11.4}{2} \][/tex]
[tex]\[ r = 5.7 \text{ meters} \][/tex]
### Step 3: Calculate the Volume
Now, we plug the radius into the volume formula:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Substitute [tex]\( r = 5.7 \)[/tex] meters and π ≈ 3.14:
[tex]\[ V = \frac{4}{3} \times 3.14 \times (5.7)^3 \][/tex]
First, calculate [tex]\( (5.7)^3 \)[/tex]:
[tex]\[ (5.7)^3 = 5.7 \times 5.7 \times 5.7 = 185.193 \][/tex]
Next, multiply by π:
[tex]\[ 3.14 \times 185.193 = 581.00722 \][/tex]
Then, multiply by [tex]\(\frac{4}{3}\)[/tex]:
[tex]\[ \frac{4}{3} \times 581.00722 = 774.6762933 \][/tex]
### Step 4: Round to the Nearest Tenth
To round 774.6762933 to the nearest tenth, we look at the first decimal place. Since this is 7, we round up:
[tex]\[ V \approx 775.3 \][/tex]
### Conclusion
The volume of the sphere, rounded to the nearest tenth, is [tex]\( 775.3 \)[/tex] cubic meters.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.