Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's go through the problem step-by-step to calculate the volume of a sphere with diameter 11.4 meters using the given value of π (pi) as 3.14, and then round the answer to the nearest tenth.
### Step 1: Understanding the Problem
We are given:
- The diameter [tex]\( D \)[/tex] of the sphere is 11.4 meters.
- We need to use π ≈ 3.14.
- We need to calculate the volume [tex]\( V \)[/tex] of the sphere.
- Finally, round the volume to the nearest tenth.
### Step 2: Find the Radius
The formula for the volume of a sphere is given by:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Where [tex]\( r \)[/tex] is the radius of the sphere. Since [tex]\( D \)[/tex] is the diameter, and the radius is half of the diameter, we have:
[tex]\[ r = \frac{D}{2} \][/tex]
Given that [tex]\( D = 11.4 \)[/tex] meters:
[tex]\[ r = \frac{11.4}{2} \][/tex]
[tex]\[ r = 5.7 \text{ meters} \][/tex]
### Step 3: Calculate the Volume
Now, we plug the radius into the volume formula:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Substitute [tex]\( r = 5.7 \)[/tex] meters and π ≈ 3.14:
[tex]\[ V = \frac{4}{3} \times 3.14 \times (5.7)^3 \][/tex]
First, calculate [tex]\( (5.7)^3 \)[/tex]:
[tex]\[ (5.7)^3 = 5.7 \times 5.7 \times 5.7 = 185.193 \][/tex]
Next, multiply by π:
[tex]\[ 3.14 \times 185.193 = 581.00722 \][/tex]
Then, multiply by [tex]\(\frac{4}{3}\)[/tex]:
[tex]\[ \frac{4}{3} \times 581.00722 = 774.6762933 \][/tex]
### Step 4: Round to the Nearest Tenth
To round 774.6762933 to the nearest tenth, we look at the first decimal place. Since this is 7, we round up:
[tex]\[ V \approx 775.3 \][/tex]
### Conclusion
The volume of the sphere, rounded to the nearest tenth, is [tex]\( 775.3 \)[/tex] cubic meters.
### Step 1: Understanding the Problem
We are given:
- The diameter [tex]\( D \)[/tex] of the sphere is 11.4 meters.
- We need to use π ≈ 3.14.
- We need to calculate the volume [tex]\( V \)[/tex] of the sphere.
- Finally, round the volume to the nearest tenth.
### Step 2: Find the Radius
The formula for the volume of a sphere is given by:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Where [tex]\( r \)[/tex] is the radius of the sphere. Since [tex]\( D \)[/tex] is the diameter, and the radius is half of the diameter, we have:
[tex]\[ r = \frac{D}{2} \][/tex]
Given that [tex]\( D = 11.4 \)[/tex] meters:
[tex]\[ r = \frac{11.4}{2} \][/tex]
[tex]\[ r = 5.7 \text{ meters} \][/tex]
### Step 3: Calculate the Volume
Now, we plug the radius into the volume formula:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Substitute [tex]\( r = 5.7 \)[/tex] meters and π ≈ 3.14:
[tex]\[ V = \frac{4}{3} \times 3.14 \times (5.7)^3 \][/tex]
First, calculate [tex]\( (5.7)^3 \)[/tex]:
[tex]\[ (5.7)^3 = 5.7 \times 5.7 \times 5.7 = 185.193 \][/tex]
Next, multiply by π:
[tex]\[ 3.14 \times 185.193 = 581.00722 \][/tex]
Then, multiply by [tex]\(\frac{4}{3}\)[/tex]:
[tex]\[ \frac{4}{3} \times 581.00722 = 774.6762933 \][/tex]
### Step 4: Round to the Nearest Tenth
To round 774.6762933 to the nearest tenth, we look at the first decimal place. Since this is 7, we round up:
[tex]\[ V \approx 775.3 \][/tex]
### Conclusion
The volume of the sphere, rounded to the nearest tenth, is [tex]\( 775.3 \)[/tex] cubic meters.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.