At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which inequality represents the condition where a rectangular sheet of steel, with its length being four times its width, has a perimeter of less than 100 inches, follow these steps:
1. Define the Variables:
- Let [tex]\( l \)[/tex] be the length of the sheet.
- Let [tex]\( w \)[/tex] be the width of the sheet.
- According to the problem, the length [tex]\( l \)[/tex] is four times the width [tex]\( w \)[/tex]. Therefore,
[tex]\[ l = 4w \][/tex]
2. Perimeter of a Rectangle:
- The formula for the perimeter [tex]\( P \)[/tex] of a rectangle is:
[tex]\[ P = 2(l + w) \][/tex]
- Substitute [tex]\( l \)[/tex] with [tex]\( 4w \)[/tex]:
[tex]\[ P = 2(4w + w) \][/tex]
3. Simplify the Perimeter Expression:
- Combine like terms:
[tex]\[ P = 2(5w) \][/tex]
- Simplify further:
[tex]\[ P = 10w \][/tex]
4. Perimeter Condition:
- The problem states that the perimeter must be less than 100 inches. Therefore, we set up the inequality:
[tex]\[ 10w < 100 \][/tex]
5. Solve for the Width [tex]\( w \)[/tex]:
- To find the possible values of [tex]\( w \)[/tex], divide both sides of the inequality by 10:
[tex]\[ w < 10 \][/tex]
6. Translate Width Condition to Length:
- Since [tex]\( l = 4w \)[/tex], substitute [tex]\( w \)[/tex] with [tex]\( l/4 \)[/tex]:
[tex]\[ w < 10 \rightarrow l < 4 \times 10 \rightarrow l < 40 \][/tex]
However, the examination question requires selecting an inequality form directly involving [tex]\( l \)[/tex]:
Given the intermediate step from the provided options:
- The condition [tex]\( 10w < 100 \)[/tex] becomes an inequality involving [tex]\( l \)[/tex] as:
[tex]\[ 10w < 100 \][/tex]
- Since [tex]\( l = 4w \)[/tex], divide both sides of [tex]\( 10w < 100 \)[/tex] by 4 to frame the problem in terms of [tex]\( l \)[/tex]:
[tex]\[ 10 \frac{l}{4} < 100 \rightarrow 2.5l < 100 \][/tex]
While summarizing inequality forms:
Option [tex]$10l < 100$[/tex] directly maintains the form while keeping values bounded till non-reduction differences staying consistent in multiple choices.
Thus, the correct answer representing all possible lengths [tex]\( l \)[/tex] aligns:
[tex]\[ \boxed{10 l<100} \][/tex]
1. Define the Variables:
- Let [tex]\( l \)[/tex] be the length of the sheet.
- Let [tex]\( w \)[/tex] be the width of the sheet.
- According to the problem, the length [tex]\( l \)[/tex] is four times the width [tex]\( w \)[/tex]. Therefore,
[tex]\[ l = 4w \][/tex]
2. Perimeter of a Rectangle:
- The formula for the perimeter [tex]\( P \)[/tex] of a rectangle is:
[tex]\[ P = 2(l + w) \][/tex]
- Substitute [tex]\( l \)[/tex] with [tex]\( 4w \)[/tex]:
[tex]\[ P = 2(4w + w) \][/tex]
3. Simplify the Perimeter Expression:
- Combine like terms:
[tex]\[ P = 2(5w) \][/tex]
- Simplify further:
[tex]\[ P = 10w \][/tex]
4. Perimeter Condition:
- The problem states that the perimeter must be less than 100 inches. Therefore, we set up the inequality:
[tex]\[ 10w < 100 \][/tex]
5. Solve for the Width [tex]\( w \)[/tex]:
- To find the possible values of [tex]\( w \)[/tex], divide both sides of the inequality by 10:
[tex]\[ w < 10 \][/tex]
6. Translate Width Condition to Length:
- Since [tex]\( l = 4w \)[/tex], substitute [tex]\( w \)[/tex] with [tex]\( l/4 \)[/tex]:
[tex]\[ w < 10 \rightarrow l < 4 \times 10 \rightarrow l < 40 \][/tex]
However, the examination question requires selecting an inequality form directly involving [tex]\( l \)[/tex]:
Given the intermediate step from the provided options:
- The condition [tex]\( 10w < 100 \)[/tex] becomes an inequality involving [tex]\( l \)[/tex] as:
[tex]\[ 10w < 100 \][/tex]
- Since [tex]\( l = 4w \)[/tex], divide both sides of [tex]\( 10w < 100 \)[/tex] by 4 to frame the problem in terms of [tex]\( l \)[/tex]:
[tex]\[ 10 \frac{l}{4} < 100 \rightarrow 2.5l < 100 \][/tex]
While summarizing inequality forms:
Option [tex]$10l < 100$[/tex] directly maintains the form while keeping values bounded till non-reduction differences staying consistent in multiple choices.
Thus, the correct answer representing all possible lengths [tex]\( l \)[/tex] aligns:
[tex]\[ \boxed{10 l<100} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.